GUIDE 30F PLANT PATHOLOGY

Editors:

Dr Palash Deb Nath (Professor & Head)
Dr Anurag Kashyap (Assistant Professor)
Dr Munmi Borah (Junior Scientist)
Department of Plant Pathology
Assam Agricultural University, Jorhat, Assam

FIRST EDITION 2022

COLLEGE OF AGRICULTURE
ASSAM AGRICULTURAL UNIVERSITY
JORHAT, ASSAM

Published by:

Assam Agricultural University Jorhat , Assam, India

Pin: 785013

© All rights reserved. No part of this publication can be reproduced, in any form without written permission from the publisher and author both.

First published : 2022

Cover page designed by : Ms. Aarhata Nath, B.Sc. (Sericulture),

AAU, Jorhat

Price : Rs 250.00

Laser Typesetting by : Nisha

Thana Road, Jorhat, Assam

Financial support from

ICAR NAHEP (National Agricultural Higher Education

Project)

Guide book of Plant Pathology: An objective type reference book for competitive exams

Content

Chapter No	Chapter Title	Page number
1	History of Plant Pathology	
2	Introduction and Principle of Plant Pathology	
3	Plant Microbe interactions	
4	Fundamentals of Mycology	
5	Basic bacteriology	
6	Plant Virology	
7	Disease of crop plants (Fungi, Bacteria and Viruse	es)
8	Fungicides and Chemical controls	
9	Biological control of plant diseases	
10	Plant diseases epidemiology	
11	Plant disease control and management	
12	Laboratory techniques in plant pathology	
13	Molecular plant pathology	
14	Phanerogamic parasites, non parasitic diseases a	nd Algae

Guide book of Plant Pathology: An objective type reference book for competitive exams

LIST OF CONTRIBUTORS

Cha	pter Chapter Title	List of contributors
No		Ananya Purakayastha, Dipankar Haloi, Medim Sorongsa,
1.	History of Plant Pathology	Swapnil Borah, Mehjebin Rahman, Zangila Hazowary
2.	Introduction and Principle of Plant Pathology	Dipankar Haloi, Gurpreet Kaur Bhamra, Zangila Hazowary.
3	Plant Microbe interactions	Trishna Taye, Bhubeneswari V, Dibyashree Dutta, Gurpreet Kaur Bhamra, Swagata Saikia
4	Fundamentals of Mycology	Ananya Purakayastha, Medim Sorongsa, Ankita Saha, Swapnil Borah, Rothu Gowtham, Gitashree Das, Lopamadra Giri, Pinkumoni Bokotial, Ruthy Tabing, Bishal Saikia.
5	Basic bacteriology	Ananya Purakayastha, Medim Sorongsa, Ankita Saha, Bandana Singha, Swapnil Borah, Ankita Saikia, Gitashree Das, Kullumanali Gogoi, Pinkumoni Bokotial, Ruthy Tabing., Swagata Saikia, Bishal Saikia.
6	Plant Virology	Devayani Sarmah, Trishna Taye, Preetam Baruah, Dibyashree Dutta, Dikshita Saikia, Kullumanali Gogoi, Pinkumoni Bokotial, TC Lalruatfeli.
7	Disease of crop plants (Fungi, Bacteria and Viruses)	Dipankar Haloi, Devayani Sarmah, Vercity Bora, Preetam Baruah, Ankita Saikia, Snata Kaushik, Lopamadra Giri, TC Lalruatfeli, Bishal Saikia
8	Fungicides and Chemical controls	Mehjebin Rahman, Dibyashree Dutta, Gitashree Das, Kullumanali Gogoi, Rajashree Chetia, Shenaz Sultana Ahmed
9	Biological control of plant diseases	Pubali Bezbaruah, Chayanika Bora, Bandana Singha, Mehjebin Rahman, Mridupol Handique.
10	Plant diseases epidemiology	Rothu Gowtham, Bhubeneswari V, Lopamadra Giri.
11	Plant disease control and management	Rajashree Nath, Pubali Bezbaruah, Chayanika Bora, Vercity Bora, Mridupol Handique, Rajashree Chetia, Shenaz Sultana Ahmed, TC Lalruatfeli.
12	Laboratory techniques in plant pathology	Trishna Taye, Ankita Saha, V shiva sai swaroop, Suprakash Sau, Ankita Saikia, Dikshita Saikia, Jutimala Phookan.
13	Molecular plant pathology	Rothu Gowtham, Tanushree Das, Subhajit khound, Bhubeneswari V,Bishal Saikia, Jutimala Phookan, Rajashree Chetia, Shenaz Sultana Ahmed, Bandana Saikia, KSD Siva Roopa Kumar, Sukanya Gogoi, Rituraj Das, Mirjeng Ronghang, Lunisha Pegu, Gitashree Das, Mateti Gayithri, Ruthy Tabing, Pinkumoni Bokotiyal, Mousumi Gogoi, Bishakha Deb, Amal Jyoti Debnath, Swgwmsar Basumatary, Partha Pratim Sarmah, Snata Kaushik, Longkiri Rongpi, Anindita Patowary, Pamballa Sarika, Rashmita Saikia.
14	Phanerogamic parasites, non parasitic diseases and Algae	Pubali Bezbaruah, V Shiva Sai Swaroop, Chayanika Bora, Bandana Singha, Suprakash Sau, Snata Kaushik, Dikshita Saikia, Gurpreet Kaur Bhamra, Jutimala Phookan, Mridupol Handique, Ruthy Tabing, Swagata Saikia, Zangila Hazowary

Preface

"Guide Book of Plant Pathology" is an objective type reference book, which is designed for enhancing preparedness of students to appear in various competitive exams with Plant Pathology as a subject. The book is largely the outcome of student guidance programme of Department of Plant Pathology, Assam Agricultural University, Jorhat, for appearing in various competitive examination in the discipline of Plant Pathology. With changing times and up gradation of syllabus, the question patterns of competitive examinations are also changing tremendously. Accordingly, to get success in such exams, a thorough knowledge of the subject as well as a track on question pattern and regular practice of such questions is very essential. Hence, as part of the preparation activity of the department for the students, regular exercise of framing of questions as well as their practice based on lectures provided by faculty members, guest lecturers and revision of books, was given emphasis. Here we have compiled the various questions generated during the exercises, from different books in the form of a guide book, which will be a very valuable resource for mock tests and practice for all current and future students, aspiring to crack various exams in Plant Pathology. Besides, in answer section of the book, the sources of the questions are clearly indicated, so as to enable the students for further reading and clarification.

This guidebook is a collective effort of the entire Department of Plant Pathology, AAU, Jorhat, which has been possible especially due the dedication shown by the faculty members and hard work put by the students, who went the extra mile by joining the department's competitive exam guidance programme, attending lectures outside their regular classes, completing their assigned tasks and contributing in question framing from various chapters. We are also thankful to our guest lecturers from Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi namely, Dr. Aundy Kumar, Dr. Robin Gogoi and Dr. Parimal Sinha for taking classes on various important topics, from which many questions are being incorporated in this guidebook. We acknowledge the support and guidance received from authority of Assam Agricultural University and also express our gratitude to National Agricultural Higher Education Project (NAHEP) for providing the fund for publication of this guidebook.

Editors

ASSAM AGRICULTURAL UNIVERSITY JORHAT-785013, ASSAM (INDIA)

(Recipient of Sardar Patel Outstanding Institution Award)

Foreword

I am happy to learn that the Department of Plant Pathology, Assam Agricultural University, Jorhat has compiled an objective type reference book named "Guide Book of Plant Pathology" designed for augmenting preparation of students to appear in various competitive exams in Plant Pathology discipline. Study on various plant pathogenic microorganisms and the diseases they cause, is a fundamental aspect of agricultural sciences considering the huge losses caused by these pathogens in various crops. Many plant pathogens pose a threat to global food security, drawing attention of researchers around the globe. Research and study on Plant Pathogenic microorganisms is a fascinating field of science. However, for students aspiring for higher education in Plant Pathology as well as for positions in academics or research, appearing in competitive examinations has become indispensable. To achieve success in such exams, a thorough knowledge of the subject as well as a regular revision and practice are very essential. Hence, the compiled guide book is a timely step in the right direction and will be a very valuable resource for mock tests and practice for all current and future students, aspiring to crack various exams in Plant Pathology.

I compliment the editors and all contributors for their sincere effort in bringing out this publication.

CHAPTER 1 HISTORY OF PLANT PATHOLOGY

1.	First a	authentic records of plant disea	ases are fo	und in the writings of
	A.	Theophrastus	В.	Leeuwenhoek
	C.	Micheli	D.	Person
2.	Binon	nial system of nomenclature to	fungi was	given by
	A.	Theophrastus	В.	Leeuwenhoek
	C.	Micheli	D.	Person and Fries
3.	The pl	hysiological era of Plant Patho	ology was i	initiated by De Bary while working
		he disease		
	A.	Late blight of potato	В.	Coffee rust
	C.	Sclerotinia rot of carrots	D.	Wilt of tomato
4.	The fi	rst book on Plant Pathology w	as written	by
	A.	Kuhn	В.	Brefeld
	C.	Millardet	D.	Robert Koc
5.	The m	nethods of chemical control of	plant disea	ases was initiated by
	A.	Millardet	В.	Prevost
	C.	Burril	D.	Brefeld
6.	Phyto	bacteriology was initially sum	marized in	the book "Bacteria in Relation to
	Plant	Diseases" written by		
	A.	Smith	В.	Burill
	C.	Braun	D.	Holmes
7.		-	bacterial pa	athogen Agrobacterium tumefaciens
	was p	roved by		
	A.	Smith	В.	Burill
	C.	Braun and Pringle	D.	Holmes
8.		protection was studied in tom	ato infecte	
	A.	Mc Kinney	В.	Bawden
	C.	Stanley	D.	Homes
9.	Elucio	lation of rod shaped structure		
	A.	Mc Kinney	В.	Bawden
	C.	Stanley	D.	Rosalind Franklin
10.		rst avirulence gene was clone	•	awicz from
	A.	Pseudomonas syringe pv.	~ ·	
	B.	Pseudomonas syringe pv.	phaseolic	a

The first fungal avirulence gene was cloned from Cladosporium fulvum. gene is A. Avr10 B. Avr7 C. Avr9 D. Avr8 12. The cloning of first resistance gene HMI from maize confers resistance to pathogens A. Cochliobolus carborum B. Helminthosporium C. Rhizoctonia D. Alternaria 13. The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Klopper C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		<i>C</i> .	Pseudomonas syringe pv. ton		
gene is A. Avr10 B. Avr7 C. Avr9 D. Avr8 12. The cloning of first resistance gene HMI from maize confers resistance to pathogens A. Cochliobolus carborum B. Helminthosporium C. Rhizoctonia D. Alternaria 13. The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck					
C. Avr9 The cloning of first resistance gene HMI from maize confers resistance to pathogens A. Cochliobolus carborum C. Rhizoctonia D. Alternaria The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI Walker discovered the role of phenols in protection and defense with the distoftwo phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in pink tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner C. Garrett D. Hiltner A. Waksman B. Dommergues C. Garrett D. Hiltner A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	11.			loned f	From Cladosporium fulvum. The
12. The cloning of first resistance gene HM1 from maize confers resistance to pathogens A. Cochliobolus carborum B. Helminthosporium C. Rhizoctonia D. Alternaria 13. The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in pink tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		A.	Avr10	В.	Avr7
pathogens A. Cochliobolus carborum B. Helminthosporium C. Rhizoctonia D. Alternaria 13. The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Ward B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	Avr9	D.	Avr8
A. Cochliobolus carborum C. Rhizoctonia D. Alternaria The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI Walker discovered the role of phenols in protection and defense with the distof two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner C. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	12.		-	M1 fron	n maize confers resistance to the
C. Rhizoctonia D. Alternaria The large gene cluster, hrp region was identified for the first time in Ralsto solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner C. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman C. Garrett D. Hiltner C. Garrett D. Hiltner Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		A.	Cochliobolus carborum	В.	Helminthosporium
solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger D. Muller and Borger C. Stakman D. Orton D. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner		C.	Rhizoctonia	D.	Alternaria
solanacearum by A. De wilt B. Staskawicz C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	13.	The la	rge gene cluster, hrp region was	identifi	ed for the first time in Ralstonia
A. De wilt C. Johal and Briggs D. Gigsegen 14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the distof two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Flavanoids are salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs C. Flavanoids and salicyclic acid in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck					
14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck				В.	Staskawicz
14. The only plant genes encoding resistance to plant viruses are A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	Johal and Briggs	D.	Gigsegen
A. N gene from nicotiana B. Rx gene from potato C. Both a and b D. None of a and b 15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the discoftwo phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	14.	The or		ice to pl	
15. The first group of organic fungicide discovered was A. Alkyl diothiacarbamates B. Phenylamides C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the dis of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck				_	
A. Alkyl diothiacarbamates C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the discovered two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	Both a and b	D.	None of a and b
A. Alkyl diothiacarbamates C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the discovered two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	15.	The fi	rst group of organic fungicide dis	scovere	d was
C. Strobulin D. SBI 16. Walker discovered the role of phenols in protection and defense with the discoftwo phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs 17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck					
of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	•	D.	•
of two phenolic compounds in A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	16.	Walke	er discovered the role of phenols i	n prote	ction and defense with the discovery
A. Catechol and protocatechuic acid in pink tomato bulbs B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger Muller and Borger B. Van Peer C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner C. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner C. T.J. Burril D. M. W. Beijerinck				•	-
B. Catechol and protocatechuic acid in white tomato bulbs C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck			-	cid in pi	nk tomato bulbs
C. Flavanoids and salicyclic acid in pink tomato bulbs D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as <i>Harmful</i> and <i>Beneficial</i> ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		B.	Catechol and protocatechuic ac	cid in w	hite tomato bulbs
D. Tannin and salicyclic acid in pink tomato bulbs The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	-		
17. The phytoalexin concept was first studied in potato and proposed by A. Ward B. Stackman C. Perrin D. Muller and Borger 18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		D.	-	_	
C. Perrin Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	17.	The pl	•		
18. Who coined the term Induced Systemic Resistance A. Ross B. Van Peer C. Stakman D. Orton 19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		Α.	Ward	В.	Stackman
A. Ross C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman C. Garrett D. Hiltner Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 1. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	Perrin	D.	Muller and Borger
C. Stakman D. Orton The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner Rhizospheric organisms were classified as <i>Harmful</i> and <i>Beneficial</i> ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	18.	Who o	coined the term Induced Systemi	c Resist	tance
19. The concept of inoculum potential was consolidated by A. Waksman B. Klopper C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as <i>Harmful</i> and <i>Beneficial</i> ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		A.	Ross	В.	Van Peer
A. Waksman C. Garrett D. Hiltner 20. Rhizospheric organisms were classified as Harmful and Beneficial ny A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	Stakman	D.	Orton
C. Garrett D. Hiltner Rhizospheric organisms were classified as <i>Harmful</i> and <i>Beneficial</i> ny A. Waksman B. Dommergues C. Garrett D. Hiltner Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	19.	The co	oncept of inoculum potential was	consoli	idated by
C. Garrett D. Hiltner Rhizospheric organisms were classified as <i>Harmful</i> and <i>Beneficial</i> ny A. Waksman B. Dommergues C. Garrett D. Hiltner Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		A.	Waksman	B.	Klopper
A. Waksman B. Dommergues C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck					
C. Garrett D. Hiltner 21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	20.	Rhizo	spheric organisms were classifie	d as Ho	armful and Beneficial ny
21. Who first reported fire blight of Apple? A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		A.	Waksman	B.	Dommergues
A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck		C.	Garrett	D.	Hiltner
A. Smith B. Robert Koch C. T.J. Burril D. M. W. Beijerinck	21.	Who f	irst reported fire blight of Apple?	•	
J .					Robert Koch
· · · · · · · · · · · · · · · · · · ·		C.	T.J. Burril	D.	M. W. Beijerinck
			Guide book of plant	Patholog	· ·

22.	Who is	s regarded as the 'Father of micr	obial Ec	ology'?	
	A.	M. W. Beijerinck	В.	Louis Pasteur	
	C.	Antoni van Leewenhock	D.	Robert Koch	
23.	Who is	s the Father of Indian Phytobacte	eriology?	•	
	A.	M.C. Srinivasan	В.	Makanji Kalyanji Patel	
	C.	K.C. Mehta	D.	M.K. Hingorani	
24.	Who c	oined the term 'Rhizosphere'?		· ·	
	A.	Ernst Haeckel	B.	W. J. Dowson	
	C.	M.S. Woronin	D.	Lorenz Hiltner	
25.	First p	erson to coin the generic name	Xanthon	ionas?	
	A.	W. J. Dowson	B.	M. W. Beijerinck	
	C.	M.C. Srinivasan	D.	Ernst Haeckel	
26.	Robert	Koch is credited for establishm	ent of eti	ology of which bacterium?	
	A.	Streptomyces rimosus	B.	Penicillium notatum	
	C.	Bacillus anthracis	D.	none of the above	
	27. Wł	no is regarded as the Father of M	Iodern B	Sacteriology?	
	A.	Louis Pasteur	B.	Robert Koch	
	C.	Antoni van Leewenhock	D.	F. Smith	
28.	Who c	oined the term 'Genophore'?			
	A.	G.S. Shekhawat	B.	Oswald T. Avery	
	C.	Hans Ris	D.	M. Webb	
29.	Strepto	omyces scabies is a?			
	A.	Soil inhabitants	В.	soil borne	
	C.	Soil invaders	D.	none of the above	
30.	One ge	ene one enzyme hypothesis give	n by?		
	A.	L. R. Tulsane and C. Tulsane	В.	G. Beadle and E. Tatum	
	C.	C.L. Shear and B.D. Dodge	D.	H.H. Hotson and V.M. Cutter	
31.	First p	erson to stain the bacteria?			
	A.	Christian gram	В.	Carl Weigert	
	C.	Joseph W. Kloepper	D.	Selman Abraham Waksman	
32.	In whi	ich year Dr.Loeffler first succeed	ded in sta	aining the flagella in different	
	microorganism including bacteria?				
	A.	1876	В.	1889	
	C.	1901	D.	1898	
33.	Who c	oined the term Plasmid?			
	A.	Oswald T. Avery	В.	Lederberg	
	C.	Hans Ris	D.	M. Webb	
34.	Bacter	ial conjugation is discovered by?	?		
	A.	Joshua Lederberg and Edward	l Tatum		
	В.	Jacob, S. Brenner and F. Cuzir	1		
	C.	L. R. Tulsane and C. Tulsane			
		Guide book of plant	Patholog _.	y ♦ 9	

	D.	W Twort and F. de	Herelle		
35.	Who i	nvented compound m	icroscope?		
	A.	R.Hooke	-	В.	Knoll
	C.	Antoni van Leewer	hock	D.	Z Jensen
36.	Who	discovered yeast (Sac	charomyce	es cerevi	isiae) was responsible for alcoholic
		ntation?	,		,
	A.	M.J. Schleiden		B.	T Schwann
	C.	P.A. Micheli		D.	A.F. Blakeslee
37.	Bacte	riophage was first des	scribed by?	?	
	A.	Joshua Lederberg a	ınd Edward	d Tatum	
	В.	Jacob, S. Brenner a	nd F. Cuzi	n	
	C.	L. R. Tulsane and C			
	D.	W Twort and F. de	Herelle		
38.	The fi	ungal cause of Late B	light of Po	tato was	s established by?
	A.	P.A. Micheli	Ü	B.	H.A Ward
	C.	Brefeld		D.	Anton Heinrich de Bary
39.	Heter	othalism was first dis	covered in	Mucorn	•
	A.	Hese		В.	H. Burgeff
	C.	Blakeslee		D.	C.H. Blackley
40.	Milla	rdet accidental discov	ery of Bord	deaux m	ixture is related to which disease?
	A.		-	В.	Powdery mildew of grapes
	C.	Anthracnose of gra	- 1	D.	Blight of grapes
41.	" Nov	a Plantarum Genera	_		0 0 1
	A.	P.A. Michelli	•	В.	Thoullier
	C.	Matheiu Tillet		D.	CH Persoon
42.	Who	gave the concept of ge	nus as a ta	xonomic	c category above the rank of species
	-	called the precursor			~ *
	A.	Porta	В.	Malpi	
	C.	Tournefort	D.	•	wenhoek
43.	A the	ory that the fungi were	e composed	d of agg	regations of "zoophytes" which
	separa	ated out when soaked	in water w	vas prop	osed by?
	A.	F.T.Kutzing	В.		n Muenchhausen
	C.	L.R.Tulsane	D.	Cagn	iard de la Tour
44.				the bunt	of wheat was contagious and thought
		ne spores contained a p	-		
	A.	Matheiu Tillet	В.	B.Pre	evost
	C.	E.M.Fries	D.	CH P	Persoon
45.	Who s		ental proof	that bur	nt of wheat was caused by a fungus?
	Α.	B. Prevost	B.		Persoon
	C.	MJ Berkley	D.	E.M.	Fries

4.6	****		C) 1	1 0
46.		is known as the Linnaeus	•	9.
	A.	Linnaeus	В.	E.M.Fries
4.77	C.	Anton de Bary	D.	Oscar Brefeld
47 .		wrote "Synopsis Method		~
	A.	C.H. Persoon	В.	Benedict Prevost
	C.	E.M.Fries	D.	Montagne
48.		wrote "Systema Mycolog		
	A.	E.M.Fries	B.	C.H.Persoon
	C.	B.Prevost	D.	M.Tillet
49.	Who	is called the reconstructor	-	- •
	A.	Charles Tulasne	В.	Louis Rene Tulasne
	C.	Corda	D.	Anton de Bary
50.	Polyn	norphism in fungi was giv	en by –	
	A.	Fuckel	В.	Woronin
	C.	Tulsane brothers	D.	P.A.Saccardo
51.	Who	initiated the physiological	era in pla	ant pathology?
	A.	H.M.Ward	В.	Anton de Bary
	C.	E.F.Smith	D.	Antony van Leeuwenhoek
52.	Anton	n de Bary is called the-		
	A.	Father of Plant Pathology	у В.	Founder of Modern Mycology
	C.	Both (a) and (b)	D.	Father of Modern Plant Pathology
53.	Antor	n de Bary, initiated the "P	hysiolog	rical Plant Pathology" with the fungus –
	A.	Phytophthora infesta	nsB.	Plasmapora viticola
	<i>C</i> .	Botrytis cinerea	D.	Mucor pusulis
54.	Hete	roecism in rusts especiall	y in Puc	ecinia graminis triticina was discovered
	by-	•	-	-
	Å.	C.J. Alexopoulus	B.	M.K.Patel
	C.	P.A.Saccardo	D.	Anton de Bary
55.	The fa	amous massive 25 volume	work, "Z	The Sylloge Fungorum Omnium Hucusque
Cognite		was done by-		
	A.	P.A.Saccardo	B.	P.A.Michelli
	C.	Anton de Bary	D.	Tulsane brothers
56.	The s		st book o	on Plant Pathology in 1858, was-
	A.	Anton de Bary	B.	Julius Gotthelf Kuhn
	C.	Pier Antonio Micheli	D.	E.J.Buttler
57.	Germ	theory of disease was give	ven by –	
	A.	Robert Koch	В.	Louis Pasteur
	C.	J. Von. Liebig	D.	Brefeld
58.	Who		e techniq	ue for isolation and culturing of fungi?
	A.	Woronin	В.	Oscar Brefeld

	C.	WG Farlow	D.	R.H.Bifen
59.				nt in the epidemiology of coffee rust?
	Α.	W.A. Orton	В.	Frank
	C.	H.M.Ward	D.	W.G.Farlow
60.	Who	created the fungal group "	Fungi Iı	
	A.	Fuckel in 1869	В.	Oscar Brefeld in 1880
	C.	P.A.Saccardo	D.	A.H.R. Buller in 1931
61.	Group	oing of the living domains i	into two	major empires, namely prokaryotes and the
	_	yotes was done by-		3 1 / 31 3
	Α.	Linnaeus	B.	Edouward Chatton
	C.	Copeland	D.	Haeckel
62.	The R	*	Ceaser v	was murdered by his wife in 54 A.D. by
	mixin	g his food with the decoct	tion of th	ne fungus known as-
	A.	Claveceps purpurea	B.	Aspergillus flavus
	C.	Amanita Phalloides	D.	Amanita miscaria
63.	The fi	rst edition of Bergey's Ma	anual of	Determinative bacteriology was published
	in			
	A.	1923	B.	1925
	C.	1927	D.	1930
64.	Who is	known as the Father of I	Plant Pat	
	A.	Anton De Bary	В.	Julius Gotthelf Kuhn
	C.	Joseph Berkeley	D.	Elias Magnus Fries
	65.			arbon disulphide for soil fumigation and is
		aptly called Father of so	oil fumig	
	A.	Oscar Brefeld	В.	Harry Marshall Ward
	C.	Albert Bernard Frank	D.	Arnaud Paul Edmond Thenard
66.		-		eaux Mixture in 1885 for control of
	A.	Powdery Mildew of Gr		
	В.	Downy Mildew of Grap		
	C.	Powdery Mildew of Cu		
	D.	Downy Mildew of Cuc		
67.		•	bstitute	for Bordeaux mixture was introduced by
		in the year	·	•
	A.	Erikson, 1894	В.	Woronin, 1878
	C.	Mason, 1887	D.	Jensen, 1887
68.			is norma	l plant cells into tumor cells by introducing
	into th		ъ	DI 1
	A.	Cosmid	В.	Plasmid
	C.	Enzymes	D.	Cytoplasma

69.		edit for a detailed study of the lat	_	
	_	mental proof of organisms being	-	
	A.	Prevost	В.	Brefeld
	C.	Anton de bary	D.	Jones
70.	Bary in caused	1886 reported the role of enzymby	ies ar	nd toxins in tissue degradation
	A.	Rasltonia solanecearum	В.	Phytopthora infestans
	C.	Sclerotinia sclerotiorum	D.	Tilletia tritici
71.	In 1905	5, Jones reported the role of		in soft rots caused by bacteria.
	A.		В.	Cytolytic enzymes
	C.	Toxins	D.	None of the above
72.	_		ungi	was first discovered by Erickson in
	1694 w A.	when he reported Dhysiologic reces in rust funci	D	Physical agia races in amut funci
		• •		Physiologic races in smut fungi
		Physiologic races in powdery m	maev	viungi
72		Physiologic races of bunt fungi		
73.		1946 advanced the gene for gen ibility while working on	e con	icept of disease resistance and
	A.	· · ·	В.	Fusarium oxysporum
	C.	Sclerotium rolfsii	D.	· -
74.				athesized and accumulating at sites of
		ess was first defined by		
	В.	E. C. Stakman	C.	\mathcal{E}
	D.	Benedict Prevost		
75.	Biologi	ical specificity of disease agents	was o	demonstrated by
	Α.	Louis Pasteur	В.	T.J Burrill
	C.	Robert Koch	D.	Alfred Fischer
76.	In 1952	2, Pontecorvo and Roper discove	red p	
	A.			Aspergillus niger
	C.	Aspergillus flavus		Aspergillus fumigatus
77.		3, Luthra developed solar heat tre		1 0 0
	A.	Flag smut of wheat	В.	Wheat loose smut
	C.	_		Loose smut of sorghum
78.	The ter	rm systemic acquired resistance		
	Α.	Ross, 1961	B.	Kulka, 1965
	C.	Garett, 1970	D.	Luthra, 1953
79.	Founde		tance	in crop plants and coined the term
		olia effect"		
	A.	Vanderplank	B.	Kittleson
	C.	Biffen	D.	Flor

80.	durin	g its continuous breeding for v	ertical resi	s the loss of horizontal resistance stance in the german potato variety	
		ifolia" with late blight resistan		D1 1 00 .	
	A.	Vanderplank effect	В.	Placebo effect	
	C.	Vertifolia effect	D.	Domino effect	
81.		is considered as the Father of			
	Α.	Garett	В.	Sanford and Broadfort	
	C.	Mundkar	D.	Borlaug	
82.	First a	axenic culture of obligate para	site was pe	rformed in Puccinia graministritici	
	Å.	Williams <i>et al.</i> , 1968	В.	Waksman, 1966	
	C.	Kittleson, 1952	D.	Pontecorvo and Roper, 1952	
83.	Priest	tley proposed the term "boom	and bust"	* '	
	A.	1978	В.	1970	
	C.	1980	D.	1988	
84.	Patho	genesis Related (PR) proteins	were first		
	A.	S. Nagarajan and H. Singh		•	
	В.	A. D. Cunningham and A.I			
	C.	Van Loon and Van Kamme			
	D.	Van Loon Bakker and Piet			
85.	Who	is regarded as the Father of So		cion?	
	A.	Priestley	В.	Waksman	
	C.	Jacov Katan	D.	Weindling	
86.		coined the term plasmid?		8	
	A.	Klement	В.	Stolp	
	C.	Leaderberg	D.	Clayton	
87.		S	the Nobel	Prize in Physiology of Medicine in	
	recognition for his discovery of antibiotic streptomycin from <i>Streptomyces griseus</i> .				
	Α.	Woolley <i>et al.</i> , 1952	В.	Selman A. Waksman, 1944	
	C.	M.K Hingorani,1952	D.	Z. Klement, 1964	
88.	The c	_		aused by bacterium and a nematode	
00.		reported by			
	Α.	M.K Hingorani	В.	E.F Smith	
	C.	H.Stolp	D.	M.K Patel	
89.		*		pathogenic bacteria was introduced	
0,1		W Dye <i>et al.</i> in the year	ily of promity	, and 80 me of the man	
	A.	1980	В.	1981	
	C.	1979	D.	1970	

affect	ed by club disease by		m clover and periwinkle plants
A.		В.	D. Lafleche and J. M. Bove
	Hopkins <i>et al</i> .	D.	
		ise of sugarca	nne is caused by Rickettsia like
	rium was reported by		
A.	Hopkins	В.	Doi and Ishie
C.		D.	Maramorosch
			pal during 11th Century in ancient
India	is the first book exclusively	devoted to d	iseases of plants.
A.	Vraksha Ayurveda		
В.			
	Artha Shastra		
D.	Shusruta Samhita		
Who	is known as the Reconstruc	tor of Mycolo	ogy?
A.	L. R. Tulasne	В.	Charles Tulasne
C.	Miles Joseph Berkeley	D.	Anton De Bary
Who	investigated life cycle of po	tato late bligh	nt, grape mildew, wheat rust and hop
milde	w and gave the name Oidii	<i>ım tuckerii</i> to	grape mildew fungus?
A. He	inrich Anton De Bary	B. Vo	onmartius and Morren
C. Jul	ius Gotthelf Kuhn	D. M	iles Joseph Berkeley
The to	erms symbiosis and teleutos	spores were c	oined by
A. He	inrich Anton de Bary		
B. Vo	nmartius and Morren		
C. Jul	ius Gotthelf Kuhn		
D. Mi	les Joseph Berkeley		
Synop	osis methodica fungorum wa	as published b	by Christian Hendrik Persoon for the
nome	nclature of		
A.	Uredinales	В.	Ustilaginales
C.	Gasteriomycetes	D.	All of the above
In 190	94, Blakeslee founded hetero	othallism in	
A.	Mucor	В.	Rhizopus
C.	Agaricus	D.	Pezziza
Who	is considered as the pioneer	in apical mer	ristem culture to eliminate viruses?
A.	Teakle	В.	Kassanis
C.	Kausche	D.	Hutchins
Who	defined plant diseases as ab	normal chang	es in physiological processes which
	b the normal activity of the	_	
A.	Julius Kuhn	B.	H.M Ward
1 L.			

100.		first reported the transmission boidium brassicae		by the zoospores of stopthora parasitica	
		rotium rolfsii	-	te of the above	
101.		v		gin of physiological races through	
101.	A.	Karyokinesis	B.	Heterokaryosis	
	C.	Cytokinesis	D.	None of the above	
102.		ok 'The Nature of Plants', was v			
102.	A.	Aristotle	B.	Theophrastus	
		Linneaus	D.	Democritus	
103.	C.			ecognized as such and the first	
105.	nathoge	en for which a cultural control wa		-	
	A.	Mistletoe		Loranthus	
	C.	Viscum	D.	None of the above	
104.	٠.			ns were produced from pre existing	
104.	_	rganisms and that most infectiou	-		
	establis	_	s uiscas	es were caused by germs was	
		ert Koch	B.J.C I	224	
105		s Pasteur		on de Bary	
105.	The first book on plant pathology by Kuhn was				
	A. Diseases of Cultivated Crops, Their Causes and Their Control				
		Fungi and Plant Diseases	CD1		
		Introduction to Bacterial Diseas	ses of Pl	ants	
106	D.	None of the above			
106.		· ·		contains nucleic acid and protein?	
	A.	Stanley	В.	Bawden and Pirie	
		Ivanowski	D.	Beijerinck	
107.				designation for the properties	
		ltured microorganism.	_		
	A.	Liberibacter		Wolbachia	
	<i>C</i> .	Carsonella		Candidatus	
108.				of virus' and was awarded with	
	Nobel I	Prize in 1935 for crystallizing tob			
	A.	Mckinney	В.	W.M Stanley	
	C.	Kassanis	D.	Kausche	
109.	Who rep	ported the first nematode associa	ited dise		
	A.	Needham	В.	Devaine	
	C.	Atkinson	D.	Hewit	
110.	Hunger	showed that bacterial wilt of tor	nato wa	s facilitated by	
	A.	Root-knot Nematodes	B.	Cyst Nematodes	
	C.	Root Lesion Nematodes	D.	The Burrowing Nematode	

111.	The f	irst plant disease associated spi	roplasmaS	Spiroplasmacitri was grown by		
	A.	Mckinney	В.	Davies et al.		
	C.	Kassanis	D.	Maramorosch		
112.	Noca	rd and Roux discovered another	er agent of	diseases caused in animals which		
	was s	similar to viruses in size but wh	ich could l	be cultured on artificial media. This		
	group	was known as				
	A.	Mycoplasma	В.	Spiroplasma		
	C.	Protozoa	D.	Fastidious bacteria		
113.	The first bacterial toxin, tabtoxin was isolated from					
	A.	Pseudomonas tabaci	В.	Streptomyces griseus		
	C.	Erwinia amylovora	D.	Xanthomonas oryzae		
114.	In 18	76, Koch identified	Bacilli	us anthracis, as the first bacterium		
	to car	use disease in animals and hum	nans.			
	A.	Bacillus thuringiensis	В.	Bacillus subtilis		
	C.	Bacillus megaterium	D.	Bacillus anthracis		
115.	The first bacterial toxin,tabtoxin was isolated in pure form by					
	A.	Mckinney	В.	Davies et al.		
	C.	Woolley et al.	D.	Maramorosch		
116.	Ishie	observed that MLOs temporar	ily disappo	eared when the plants are treated		
		antibodies.				
	A.	Tetracycline	В.	Streptomycin		
	C.	Penicillin	D.	None of the above		
117.	Diener and Raymer discovered that potato spindle tuber was caused by viroid in					
	which year?					
	A.	1981	В.	1971		
	C.	1982	D.	1972		
118.	Stahe	el found that the flagellates causi	ng phloem	necrosis are present in the		
	of coffee trees.					
	A.	Pholem vessel	В.	Xylem vessel		
	C.	Both	D.	None of the above		
119.	New genus executed by Donovon for the flagellate protozoan in the non latex					
	bearing host plants is					
	A.	Pseudomonas	В.	Xanthomonas		
	C.	Phytomonas	D.	None of the above		
120.	The c	causative agent for the cadang-	cadang dis	sease in coconut as viroid was		
		rmed by	Č			
	A.	Needham	B.	Diener		
	C.	Raymer	D.	Imperial et al.		

121.		Who reported the associations of root knot nematode with the Fusarium wilt of cotton?					
	A.	Needham	В.	Hunger			
	C.	Hewit	D.	Atkinson			
122.	The d	louble stranded (ds) DNA virus in	caulifl	ower was discovered by			
	A.	Teakle	В.	Kassanis			
	C.	Shepherd	D.	Both A & B			
123.	Pucci	na path of black stem rust of whe	at in In				
	A.	S. Nagarajan and L. M. Joshi		Van Loon Bakker and Pierterse			
	C.	S. Nagarajan and H. Singh	D.				
124.	Syste	mic fungicides were discovered in					
	A.	1897	В.	1934			
	C.	1966	D.	1987			
125.		irst systemic fungicides that were					
120.	Α.	Carboxin	В.	Oxycarboxin			
	C.	Benzimidazoles	D.	Both A & B			
126.				a and also saw the yeast under the			
120.		e microscope.	ouctern	a and also saw the yeast ander the			
	A.	Leeuwenhoek	В.	Hooke			
	C.	Micheli	D.	Van Sterbeeck			
127.		is referred as the reconstructor of					
	Α.	De Barry	В.	Fuckel			
	C.	Tulasne Brothers	D.	L R Tulasne			
128.		What is the first eukaryotic organism which genome was sequenced?					
120.	A.	Saccharomyces cerevisiae	_	-			
	<i>C</i> .	Xylaria hypoxylon	D.	Aspergillus nidulans			
129.		tructure of plant cell was elucidat		risp et gettus treutums			
,	Α.	Mandles	В.	Reese			
	C.	Kirk	D.	Albersheim			
130.	The p		erothall				
	The power of bipolar and tetrapolar heterothallism in ensuring out breeding is well known. Heterothallism was discovered by						
	Α.	A. F. Blakeslee	В.	Beadle			
		Kirk	D.	Waksman			
31.	С.						
J 1.	specie	gave the concept of genus as a taxonomic category above the rank of species and is called the precursor of modern Botany?					
	_	A. Leeuwenhoek		B. Tournefort			
	C. Ho			nnaeus			
132.		t Pathology' written by–	D. DI.				
104.	A.	RS Singh	В.	Agrios			
	C.	VS Singh	D.	AP Sinha			
	\sim .	, 5 5111511	ν.	1 11 Dilliu			

133. Who discovered the downy mildew for the first time in India?			st time in India?	
	A.	EJ Butler	В.	JF Dastur
	C.	B B Mundakur	D.	KR Kirtikar
134.	The I	Bordeaux mixture was discovere	d by Mil	lardet at Boardeaux in France in
		year–		
	A.	1807	В.	1885
	C.	1905	D.	1936
135.	Who	did most of his work on rust dise	eases in l	India
	A.	R Prasad	В.	KC Mehta
	C.	BB Mundakur	D.	EJ Butler
136. V	Who dis	covered the Dual nature of Lich	ens?	
	A.	Schwendener	В.	EJ Butler
	C.	JF Dastur	D.	KR Kirtikar
137.	The g	germ theory of diseases was esta	blished	by,
	A.	Robert Koch	В.	Louis Pasteur
	C.	De Bary	D.	None of them
138.	The f	first antibiotic, reported by	wa	as Penicillin produced by a fungus,
	Penic	cillium notatum		
	A.	Alexander Fleming	В.	S. A. Waksman
	C.	C. Thom	D.	D Barry

HISTORY

- 1. Ans: A. Theophrastus Source: Modern Plant Pathology H. C. Dube, Page No: 1
- 2. Ans: D. Persoon and Fries Source: Modern Plant Pathology H. C. Dube, Page No: 1
- 3. Ans: C. Sclerotinia rot of Carrots Source: Modern Plant Pathology H. C. Dube, Page No: 3
- 4. Ans: A. Kuhn Source: Modern Plant Pathology H. C. Dube, Page No: 4
- 5. Ans: B. Prevost in 1805 Source: Modern Plant Pathology H. C. Dube, Page No: 4
- 6. Ans: A. Smith Source: Modern Plant Pathology H. C. Dube, Page No: 6
- 7. Ans: C. Braun and Pringle Source: Modern Plant Pathology H. C. Dube, Page No: 6
- 8. Ans: A. Mc Kinney Source: Modern Plant Pathology H. C. Dube, Page No: 7
- 9. Ans: D. Rosalind Franklin Source: Modern Plant Pathology H. C. Dube, Page No: 8
- 10. Ans: A .Pseudomonas *syringae* pv.*glycinea* Source: Modern plant Pathology H. C. Dube, Page No: 12
- 11. Ans: C. Avr 9 Source: Modern Plant Pathology H. C. Dube, Page No: 12
- 12. Ans: A. Cochliobolus carbonum race 1 Source: Modern Plant Pathology H. C. Dube, Page No: 12
- 13. Ans: D. Gigsegen Source: Modern Plant Pathology H. C. Dube, Page No: 12
- 14. Ans: C. Both A and B Source: Modern Plant Pathology H. C. Dube, Page No: 12
- 15. Ans: A. Alkyl dithiocarbamates Source: Modern Plant Pathology H. C. Dube, Page No: 13
- 16. Ans: A. Catechol & Protocatechuic acid in pink onion bulbs Source: Modern Plant Pathology H. C. Dube, Page No: 14
- 17. Ans: D. Muller and Borger Source: Modern Plant Pathology H. C. Dube, Page No: 14
- 18. Ans: B. Van Peer Source: Modern Plant Pathology H. C. Dube, Page No: 15
- 19. Ans: C. Garrett Source: Modern Plant Pathology H. C. Dube, Page No: 16
- 20. Ans: B. Dommergues Source: Modern Plant Pathology H. C. Dube, Page No: 17
- 21. Ans: C. T.J. Burril Source: Plant Bacteriology by K K Mondal, Page No: 5)
- 22. Ans: A. M. W. Beijerinck Source: Plant Bacteriology by K K Mondal, Page No: 6)
- 23. Ans: B. Makanji Kalyanji Patel Source: Plant Bacteriology by K K Mondal, Page No: 6)
- 24. Ans: D. Lorenz Hiltner Source: Plant Bacteriology by K K Mondal, Page No: 6)

- 25. Ans: A.W. J. Dawson Soruce: Plant Bacteriology by K K Mondal; Page No: 8)
- 26. Ans: C. Bacillus anthraci Source: Plant Bacteriology by K K Mondal; Page No:
- 5)
- 27. Ans: A. Louis Pasteur Source: Plant Bacteriology by K KMondal; Page No: 4)
- 28. Ans: C. Hans Ris Source: Plant Bacteriology by K KMondal; Page No: 12)
- 29. Ans: A. Soil inhabitants Source: Plant Pathology at glance by Utpal Kumar Bhattacharyya; Page No: 95)
- 30. Ans: B. G. Beadle and E. Tatum Source: An Introduction to Mycology by Aneeja & Mehrotra; Page No: 51)
- 31. Ans: B. Carl Weigert Source: Plant Bacteriology by K KMondal; Page No: 16)
- 32. Ans: B. 1889 Source: Plant Bacteriology by K K Mondal; Page No: 17)
- 33. Ans: B. Lederberg Source: Plant Bacteriology by K K Mondal; Page No: 87)
- 34. Ans: A. Joshua Lederberg and Edward Tatum Source: Plant Bacteriology by K K Mondal; Page No: 89)
- 35. Ans: D. Z Jensen Source: An Introduction to Mycology by Aneeja & Mehrotra; Page No: 49)
- 36. Ans: B. T Schwann Source: Fungi, Bacteria and viruses by H. C Dube; Page No: 9)
- 37. Ans: D. F.W Twort and F. de Herelle Source: Plant Bacteriology by K K Mondal; Page No: 105)
- 38. Ans: D. Anton Heinrich de Bary Source: Fungi, Bacteria and viruses by H. C Dube; Page No: 25)
- 39. Ans: C. A. F. Blakeslee Source: An Introduction to Mycology by Aneeja & Mehrotra; Page No: 51)
- 40. Ans: B. Downy mildew of grapes Source: Fungi, Bacteria and viruses by H. C Dube; Page No: 52)
- 41. (Ans: A. P.A. Michelli Source: HC Dube, An Introduction to Fungi, Page No: 3)
- 42. (Ans: C. Tournefort Source: HC Dube, An Introduction to Fungi, Page No: 3)
- 43. (Ans: B. O'van Muenchhausen Source: HC Dube, An Introduction to Fungi, Page No: 4)
- 44. (Ans: A. Matheiu Tillet Source: HC Dube, Modern Plant Pathology, Page No: 2)
- 45. (Ans: A. B.Prevost Source: HC Dube, Modern Plant Pathology, Page No: 2)
- 46. (Ans: B. E.M. Fries Source: HC Dube, An Introduction to Fungi, Page No: 4)
- 47. (Ans: A. C.H. Persoon Source: HC Dube, An Introduction to Fungi, Page No: 4)
- 48. (Ans: A. E.M.Fries Source: HC Dube, An Introduction to Fungi, Page No: 4)
- 49. (Ans: B. Louis Rene Tulsane Source: HC Dube, An Introduction to Fungi, Page No: 5)
- 50. (Ans: C. Tulsane brothers Source: HC Dube, An Introduction to Fungi, Page No: 5)
- 51. (Ans: B. Anton De Bary Source: HC Dube, Modern Plant Pathology, Page No: 3)
- 52. (Ans: C. Both A and B Source: HC Dube, An Introduction to Fungi, Page No: 6)

- 53. (Ans: A. *Phytophthora infestans* Source: HC Dube, Modern Plant Pathology, Page No: 3)
- 54. (Ans: D. Anton De Bary Source: HC Dube, An Introduction to Fungi, Page No: 6)
- 55. (Ans: A. P.A. Sacchardo Source: HC Dube, An Introduction to Fungi, Page No: 6)
- 56. (Ans: B. Julius Gotthelf Kuhn Source: HC Dube, Modern Plant Pathology, Page No: 4)
- 57. (Ans: B. Louis Pasteur Source: HC Dube, An Introduction to Fungi, Page No: 7)
- 58. (Ans: B. Oscar Brefeld Source: HC Dube, Modern Plant Pathology, Page No: 4)
- 59. (Ans: C. H.M. Ward Source: HC Dube, Modern Plant Pathology, Page No: 3)
- 60. (Ans: A. Fuckel in 1869 Source: HC Dube, An Introduction to Fungi, Page No: 5)
- 61. (Ans: B. Edouward Chatton Source: Kalyan.K. Mondal, Plant Bacteriology, Page No: 6)
- 62. (Ans: C. Amanita Phalloides Source: H.C.Dube, A Textbook of Fungi, Bacteria and Viruses, Page No: 8)
- 63. (Ans: A. 1923 Source: Kalyan.K.Mondal, Plant Bacteriology, Page No: 7)
- 64. (Ans: B. Julius Gotthelf Kuhn Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:7)
- 65. (Ans: D. Arnaud Paul Edmond Thenard Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:8)
- 66. (Ans: B. Downy Mildew of Grapes Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:8)
- 67. (Ans: C. Masson, 1887 Source:Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:8)
- 68. (Ans: B. Plasmid Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:20)
- 69. (Ans: C. Anton De Bary Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:17)
- 70. (Ans: C. *Sclerotinia sclerotiorum* Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:17)
- 71. (Ans: B. Cytolytic enzymes Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:17)
- 72. (Ans: A. Physiologic races in rust fungi Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:18)
- 73. (Ans: A. *Melampsora lini* Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:10)
- 74. (Ans: A. K.O. Muller and H. Borger Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:19)
- 75. (Ans: C. Robert Koch Source: Introduction to Principles of Plant Pathology-R.S Singh; Page No:20)

- 76. (Ans: A. Aspergillus nidulans Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 77. (Ans: B. Wheat loose smut Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 78. (Ans: A. Ross, 1961 Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 79. (Ans: A. Vanderplank Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 80. (Ans: C. Vertifolia effect Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 81. (Ans: A. Garett Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 82. (Ans: A. Williams et al., 1966 Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:11)
- 83. (Ans: B. 1970 Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:12)
- 84. (Ans: C. Van Loon and Van Kammen Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:12)
- 85. (Ans: C. Jacov Katan Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:12)
- 86. (Ans: C. Lederberg Source:Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:13)
- 87. (Ans: B. Selman A. Waksman, 1952 Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:13)
- 88. (Ans: A. M.K. Hingorani Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:13)
- 89. (Ans: A. 1980 Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:13)
- 90. (Ans: B. D.Lafleche and J.M. Bove Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:14)
- 91. (Ans: D. Maramorosch Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:14)
- 92. (Ans: A. Vraksha Ayurveda Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:5)
- 93. (Ans: A. L.R. Tulasne Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:7)
- 94. (Ans: D. Miles Joseph Berkeley Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:7)
- 95. (Ans: A. Heinrich Anton De Bary Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:7)

- 96. (Ans: D. All of the above Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:6)
- 97. (Ans: B. Rhizopus Source: Fundamentals of Phytopathology-Alice and Jayalakshmi ,Page No:9)
- 98. (Ans: B. Kassanis Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:15)
- 99. (Ans: A. Julius Kuhn Source: Fundamentals of Phytopathology-Alice and Jayalakshmi, Page No:19)
- 100. (Ans: A. *Olpidium brassicae* Source:Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:15)
- 101. (Ans: B. Heterokaryosis Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:10)
- 102. (Ans: B. Theophratus Source: G.N Agrios, Plant Pathology, Page No:10)
- 103. (Ans: A. Mistletoe Source: G.N Agrios, Plant Pathology, Page No:14)
- 104. (Ans: C. Louis Pasteur Source: G.N Agrios, Plant Pathology, Page No:18)
- 105. (Ans: A. Diseases of Cultivated Crops, Their Causes and Their Control Source: G.N. Agrios, Plant Pathology, Page No:22)
- 106. (Ans: B. Bawden and Pirie Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:15)
- 107. (Ans: D. *Candidatus* Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:14)
- 108. (Ans: B. W.M Stanley Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:15)
- 109. (Ans: A. Needham Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)
- 110. (Ans: A. Root-knot Nematodes Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)
- 111. (Ans: D. Maramorosch Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:14)
- 112. (Ans: A. Mycoplasma Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:14)
- 113. (Ans: A. *Pseudomonas tabaci* Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:13)
- 114. (Ans: D. Bacillus anthracis Source: G.N Agrios, Plant Pathology, Page No:23)
- 115. (Ans: C. Woolley *et al.* Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:13)
- 116. (Ans: A. Tetracycline Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:14)
- 117. (Ans: B. 1971 Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)

- 118. (Ans: A. Phloem vessel Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)
- 119. (Ans: C. Phytomonas Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)
- 120. (Ans: D. Imperial et al. Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)
- 121. (Ans: D. Atkinson Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:16)
- 122. (Ans: C. Shepherd Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:15)
- 123. (Ans: A. S.Nagarajan & L.M. Joshi Source: Fundamentals of Phytopathology-Alice and Jeyalakshmi, Page No:12)
- 124. (Ans: C. 1966 Source: Principle of Plant Pathology, RS Singh, Page No. 350)
- 125. (Ans: D. Both A&B Source: Principle of Plant Pathology, RS Singh, Page No. 351)
- 126. (Ans: A. Leewenhoek Source: An Introduction to Fungi, H. C Dube, Page No. 3)
- 127. (Ans: D. L.R. Tulasne Source: (An Introduction to Fungi, H. C Dube, Page No. 5)
- 128. (Ans: A. *Saccharomyces cerevisiae* Source: (An Introduction to Fungi, H. C Dube, Page No. 10)
- 129. (Ans: D. Albershiem Source: (An Introduction to Fungi, H. C Dube, Page No. 11)
- 130. (Ans: A. A.F. Blakeslee Source: An Introduction to Fungi, H. C Dube, Page No. 10)
- 131. (Ans: A. Tournefort Source: (An Introduction to Fungi, H. C Dube, Page No. 3)
- 132. (Ans: B. Agrios Source: Plant Pathology, GN Agrios)
- 133. (Ans: A) E.J. Butler
- 134. (Ans: B) 1885
- 135. (Ans: B) K.C. Mehta
- 136. (Ans: A Schwendener Source: (An Introduction to Fungi, H. C Dube, Page No. 471)
- 137. (Ans: Robert Koch, Louis Pasteur, De Bary Source: An Introduction to Fungi, H. C Dube, Page No. 7)
- 138. (Ans: A. Alexander Fleming Source: An Introduction to Fungi, H. C Dube, Page No. 9)

CHAPTER 2 INTRODUCTION TO PLANT PATHOLOGY

1.	Assertion: Powdery mildews are generally prevalent in dry areas					
	Reason	: powdery mildew spore germin	ation is i	inhibited by free water		
	A. a & r correct, r explains a		B. a &	r correct, r doesn't explain a		
	C. a is	wrong r is correct	D. a is	correct, r is wrong		
2.	Potato	scab disease is more severe in				
	A.	Wet soil	В.	Dry soil		
	C.	Humid weather	D.	Dry weather		
3.	Favora	ble conditions for club root of cru	ucifers			
	A. High moisture throughout the life cycle					
	B. High moisture in the early stages					
	C. High moisture in the later stages					
	D.	None of the above				
4.	Fusariı	um cotton wilt occurs in	_ soils i	n India		
	A.	Alluvial soil	B.	Laterite soil		
	C.	Redsoil	D.	Black soil		
5.	The co	ncept of "saprophytic ability" is g	given by			
	A.	Garrett	B.	Gaumann		
	C.	Dimond and Horsefall	D.	Jones		
6.	Capacity of a lant to invade and grow in its host plant and to reproduce on or in it					
	A.	Pathogenicity	B.	Virulence		
	C.	Aggressiveness	D.	Infection		
7.	The period from spore landing until the parasitized tissue produces new spores in					
	known	as				
	A.	Incubation period	В.	Latent period		
	C.	Quiescent period	D.	Both B and C		
8.	First pl	ant disease regulatory legislation	in the w	orld was given by		
	A.	French government	B.	US government		
	C.	German government	D.	UK government		
9.	Germin	nation of zoospores of Phytophth	nora infe	stans is inhibited by		
	A.	Low atmospheric pressure	B.	High atmospheric pressure		
	C.	Low temperature	D.	High temperature		

10.	Vertici	illium wilts are more common in		
	A.	Potassium deficient soil	B.	Potassium rich soil
	C.	Nitrogen deficient soil	D.	Nitrogen rich soil
11. Fu	sarium v	wilt of cotton are more common i	n	
	A.	Potassium deficient soil	B.	Potassium rich soil
	C.	Nitrogen deficient soil	D.	Nitrogen rich soil
12.	The te	rm 'inoculum potential' was coin	ed by	
	A.	Garrett	В.	Van der Plank
	C.	Horsfall	D.	Diamond and Horsfall
13.	Peptio	loglycan in cell wall is pesent in		
	Α.	Bacteria	B.	Archaea
	C.	Bacteria and archaea	D.	Fungi
14.	Methic	onine is the amino acid initiating p	rotein sy	enthesis in
		Bacteria	В.	Fungi
	C.	Bacteria and archaea	D.	Fungi and Archaea
15.	Amino	acid initiating protein synthesis i	n bacteri	
	A.	Formyl methionine	B.	Methionine
	C.	Serine	D.	Histidine
16.	Histon	ne proteins are absent in		
	A.	Bacteria	B.	Archaea
	C.	Bacteria and Archaea	D.	Fungi
<i>17</i> .	Panto	ea stewartia p.v. stewarti survive	es in the	intestinal tract of
	A.	Hylemyo platura	B.	Acalymmavittatum
	C.	Chaetocnama pulicaira	D.	Anguina tritici
18. Er	winia tr	acheiphila (causing cucmber wil	t) lives i	n the intestine of
	A.	Hylemyo platura	В.	Acalymma vittatum
	C.	Chaetocnama pulicaira	D.	Anguina tritici
19.	Erwin	ia carotovora subsp. atroseptica	lives in	side the body of
	A.	Hylemyo platura	В.	Acalymma vittatum
	C.	Chaetocnama pulicaira	D.	Anguina tritici
20.	Which	of the following is not a phloem	colonizii	ng bacteria
A.	Candi	datus Liberobacter	B.	Serratia marcescens
C.	Clove	r club leaf agent	D.	Clavibacterxyli subsp. Xyli
21.	Plant o	diseases and disorders make the p	plant to-	
	A.	suffer	B.	kill
	C.	reduce their ability to survive	D.	All of the above
22.	The te	rm pathology derived from how	many gr	eek words-
	A.	1	B.	4
	C.	3	D.	2

Pick the wrong one to the following statement Plant Pathology is to study the-					
A.		-	nd abiotic agents		
	-	-			
C.	-	nt and the	pathogen in relation to the overall		
D.		ınagement	strategy to surmount the diseases		
	and to reduce the loss				
The o	utbreak of "Irish Famine" duri	ng which	year-		
A.	1845	В.	1867		
C.	1847	D.	1843		
Coffe	ee Wilt Disease caused by spe	cies –			
A.	Fusarium oxysporum	B.	Fusarium Xylarioides		
C.	Fusarium avenaceum	D.	Fusarium acutatum		
'Nova	Plantarum genera' was publis	shed by w	hom-		
A.	Pier Antonio Micheli	В.	Matheiu Du Tillet		
C.	Tournefort	D.	Von martius and Morren		
'Nova	Plantarum genera' was publis	shed in wh	nich year-		
A.	1729	В.	1725		
C.	1724	D.	1726		
A.	Rust fungus	В.	Bunt fungus		
C.	wheat stem rust	D.	None of the above		
Bunt t	fungus was discovered by who	m-			
A.	Anton De Bary	B.	Pier Antonio Micheli		
C.	Benedict Prevost	D.	None of the above		
A.	Pier Antonio Micheli	В.	Anton De Bary		
C.	Benedict Prevost	D.	Julius Gotthelf Kuhn		
Dark l	Era of Plant Pathology-				
A.	18th Century	B.	19th century		
C.	17th century	D.	20th century		
A.	Droughts	B.	Nutrient deficiencies		
C.	Toxicities	D.	Parasitic microorganisms		
$oldsymbol{arepsilon}$					
A.	Virus	B.	Bacteria		
C.	Nematodes	D.	All of the above		
Plant	Pathology does not try to incre	ease our ki	nowledge about-		
A.	Plant disease	B.	Weather		
C.	Equipments to control disease	se			
D.					
			χγ ♦ 28		
	A. B. C. D. The of A. C. Coffe A. C. 'Nova A. C. 'Bene A. C. Bunt A. C. Father A. C. Plant A. C. Plant A. C. Plant A. C. Plant A. C.	A. Diseases /disorders caused by Mechanisms of plant develoes. The interaction between platenvironment. D. Development of suitable may and to reduce the loss. The outbreak of "Irish Famine" during the A. 1845. C. 1847. Coffee Wilt Disease caused by spetern A. Fusarium oxysporum. C. Fusarium avenaceum. 'Nova Plantarum genera' was publisted. Pier Antonio Michelies. Tournefort. 'Nova Plantarum genera' was publisted. 1729. C. 1724. 'Benedict Prevost' discovered the lied. Rust fungus. C. wheat stem rust. Bunt fungus was discovered by whom the A. Anton De Bary. C. Benedict Prevost. Father of Plant Pathology. A. Pier Antonio Michelies. Benedict Prevost. Father of Plant Pathology. A. Pier Antonio Michelies. Benedict Prevost. Plant Pathology. A. 18th Century. C. 17th century. Plant diseases includes losses by-A. Droughts. C. Toxicities. Pathogenic microorganisms are-A. Virus. C. Nematodes. Plant Pathology does not try to increase. D. Develop methods to manage.	A. Diseases /disorders caused by biotic a B. Mechanisms of plant development C. The interaction between plant and the environment D. Development of suitable management and to reduce the loss The outbreak of "Irish Famine" during which A. 1845 B. C. 1847 D. Coffee Wilt Disease caused by species – A. Fusarium oxysporum B. C. Fusarium avenaceum D. 'Nova Plantarum genera' was published by w. A. Pier Antonio Micheli B. C. Tournefort D. 'Nova Plantarum genera' was published in wh A. 1729 B. C. 1724 D. 'Benedict Prevost' discovered the life cycle o A. Rust fungus B. C. wheat stem rust D. Bunt fungus was discovered by whom- A. Anton De Bary B. C. Benedict Prevost D. Father of Plant Pathology A. Pier Antonio Micheli B. C. Benedict Prevost D. Father of Plant Pathology A. Pier Antonio Micheli B. C. Benedict Prevost D. Father of Plant Pathology- A. 18th Century B. C. 17th century D. Plant diseases includes losses by- A. Droughts B. C. Toxicities D. Pathogenic microorganisms are- A. Virus B. C. Nematodes D. Plant Pathology does not try to increase our k A. Plant disease B. C. Equipments to control disease		

35.	Infec	etious plants disease are –					
	A.	A. Diseases caused by lack or excess of soil moisture					
	B.	Disease caused by minerals tox					
	C.	Disease cause by air pollution					
	D.	Diseases caused by fungi					
36.	"Syste	ema Naturae" published by-					
	A.	Antonius Van Leeuwenhoek	В.	Carl Linnaeus			
	C.	Charles Darwin	D.	Louis Pasteur			
37.	Crow	n Gall disease first showed by –					
	A.	Koch	В.	Anton de Bary			
	C.	Smith	D.	Alfred Fischer			
38.	The si	mallest infectious agents that can	multiply	y autonomously in plant cell-			
	A.	Viruses	В.	Bacteria			
	C.	Prions	D.	Viroids			
39.	Role of Primary inoculum-						
	A.	secondary infections	В.	no infection cased			
	C.	Primary infections	D.	None of the above			
40.	The process through which genetic recombination can occur within fungal						
	hrtero	okaryons-					
	A.	Heterokaryosis	В.	Parasexualism			
	C.	Vegetative incompatibility	D.	Heteroploidy			
41.	Partial or complete loss of virulence in pathogens-						
	A.	Avirulence	В.	Attenuation			
	C.	Mutation	D.	None of the above			
42.	Horizontal Resistance is governed by-						
	A.	Single gene	B.	Multiple genes			
	C.	Few genes	D.	None of the above			
43.	Race-specific and monogenic type of resistance-						
	A.	Horizontal resistance	В.	Apparent resistance			
	C.	Vertical resistance	D.	All of the above			
44.	The ability of plants to produce a good crop even when they are infected with						
	patho	gens-					
	A.	Disease escape	В.	Tolerance to disease			
	C.	Horizontal resistance	D.	Vertical resistance			
45.		is the name of the special hyphal					
		ents directly from the cytoplasm of					
		ustoria	B. Mi				
	C. Constricting ring		D. All of the above				

46.	What	does 'Perfect stage' of a fung	us indicate	e?				
	A.	indicates that it can reprodu						
	В.	1						
	C.	indicates that it is able to for	-	sexual spores				
	D.	All of the above	r					
47.			d Jack O I	antern mushroom are all examples				
	of			T				
	A.	Poisonous mushrooms	B.	Edible mushrooms				
	C.	None of the above	D.	Both (a) and (b)				
48.	Oyste	er mushroom is an example of	predator fu	` ' ' ' '				
	A.	Tapeworms	В.	Pinworms				
	C.	Platyhelminthes	D.	Roundworms				
49.	Colur	nella is a specialized sterile stru	acture four	nd in sporangium of-				
	A.	Ulothrix	В.	Yeast				
	C.	Spirogyra	D.	Rhizopus				
50.		n hyphae of a mycelium grow to	ogether an					
	forming a thick woven tissue, it is called as?							
	A.	Plectenchyma	B.	Sclerotia				
	C.	Rhizomorph	D.	All of the above				
51.		h of the following is edible fung	gi?					
	A.	Morchella	В.	Agaricus				
	C.	Lycoperdon	D.	All of the above				
52.	When	n two mycelia of opposite strain	ns (+) & (-	-) come near one another, the				
		lia produce small outgrowths ca		,				
	A.	Progametangia	В.	Sclerotia				
	C.	Ascus	D.	Metulae				
53.	Whic	h of the following is homothalli	c?					
	A.	Rhizopus nigricans	В.	Rhizopus stolonifer				
	C.	Rhizopus sexualis	D.	Both A and B				
54.	Chief	Cenzyme found in yeast cell is:						
	A.	Amylase	В.	Maltase				
	C.	Zymase	D.	Ligase				
55.	What	·	esent in th	•				
		What is the name of the chemical present in the lichens that have great medicinal value against various ailments?						
	A.	Lichenin	В.	Stringent chemicals				
	C.	Usnic acid	D.	Both A & B				
56.	An as	ssociation in which only one of	the partne	ers benefits and there is no				
		vantage to the other partner is	•					
	Α.	Mutualism	В.	Commensalism				
	C.	Symbiosis	D.	Parasitism				
		•						

57.	The AN	M fungi belongs to phylum		
	A.	Glomeromycota	В.	Ascomycota
	C.	Basidiomycota	D.	None of the above
58.	The res	serve food in yeast is the form of	f:	
	A.	Starch	B.	Cellulose
	C.	Oils & glycogen	D.	Protein
59.	Yeast b	pelongs to class:		
	A.	Deuteromycetes	В.	Basidiomycetes
	C.	Zygomycetes	D.	Ascomycetes
60.	Which	Penicillium species used in 'Che	ese' mal	king?
	Α.	Penicillium notatunt	В.	Penicillium roqueforti
	C.	Penicillium diuaricatum	D.	Penicillium crysogemum
61.	Organi	sms that derive their nutrition from	om dead	organic matter are referred as-
	A.	Hemibiotroph	B.	Autotrophs
	C.	Saprophytes	D.	None of the above
62.	The ab	ility of an otherwise susceptible	plant to a	avoid damaging disease stress
	becaus	e the way it grows is referred as	S-	
	A.	Disease escape	B.	Tolerance
	C.	HR response	D.	Vertical resistance
63.	The tin	ne lapsing between inoculation a	nd appea	arance of symptoms is known as-
	A.	Incubation period	B.	Latent period
	C.	Dormant period	D.	Acquired time period
64.	Diseas	e prevalent in, and confined to a	particula	ar area, country or district are
	referre	d as-		
	A.	Pandemic	B.	Endemic
	C.	Epidemic	D.	Sporadic
65.	Resista	ance when it is evenly spread aga	ainst all	races or a pathogen is known as
	A.	Horizontal Resistance	B.	Vertical Resistance
	C.	Oligogenic Resistance	D.	None of the above

CHAPTER 2 INTRODUCTION AND PRINCIPLE OF PLANT PATHOLOGY

- 1. Ans: A, Source: HC Dube, Modern Plant Pathology, Page- 34
- 2. Ans: B, Source: HC Dube, Modern Plant Pathology, Page- 35
- 3. Ans: B, Source: HC Dube, Modern Plant Pathology, Page- 35
- 4. Ans: D, Source: HC Dube, Modern Plant Pathology, Page- 36
- 5. Ans: A, Source: HC Dube, Modern Plant Pathology, Page- 37
- 6. Ans: C, Source: RS Singh, Introduction to principles of Plant Pathology, Page- 10
- 7. Ans: D, Source: RS Singh, Introduction to principles of Plant Pathology, age- 12
- 8. Ans: A, GN Agrios, Plant Pathology, Page- 16
- 9. Ans: A, Source: HC Dube, Modern Plant Pathology, Page- 34
- 10. Ans: B, Source: HC Dube, Modern Plant Pathology, Page- 36
- 11. Ans: A, Source: HC Dube, Modern Plant Pathology, Page- 36
- 12. Ans: C, Source: Modern Plant Pathology, Page- 36
- 13. Ans: A, Source: KK Mondal, Plant bacteriology, Page- 2
- 14. Ans: D, Source: KK Mondal, Plant bacteriology, Page- 2
- 15. Ans: A, Source: KK Mondal, Plant bacteriology, Page- 2
- 16. Ans: A, Source: KK Mondal, Plant bacteriology, Page- 2
- 17. Ans: C, Source: HC Dube, Modern Plant Pathology, Page- 55
- 18. Ans: B, Source: HC Dube, Modern Plant Pathology, Page- 55
- 19. Ans: A, Source: HC Dube, Modern Plant Pathology, Page- 55
- 20. Ans: D, Source: HC Dube, Modern Plant Pathology, Page- 70
- 21. Ans: (D) All the above, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page-1
- 22. Ans: (D) 2, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 1
- 23. Ans: (B) Mechanism of Plant Development, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page-1
- 24. Ans: (A) 1845, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 2
- 25. Ans: (B) *Fusarium Xylariodes*, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page-3
- Ans: (A) Pier Antonio Micheli, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 6

- 27. Ans: (A) 1729, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 6
- 28. Ans: (B) Bunt fungus, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page-6
- 29. Ans: (C) Benedict Prevost, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 6
- 30. Ans: (B) Anton de Bary, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 7
- 31. Ans: (C) 17th century, Source: D Alice, C Jeyalakhmi, AS Krishnamoorthy, M Karthikeyan, Fundamentals of Phytopathology, Page- 5
- 32. Ans: (D) Parasitic microorganisms, Source: GN Agrios, Plant Pathology, Page- 4
- 33. Ans: (D) All of the above, Source: GN Agrios, Plant Pathology, Page-7
- 34. Ans: (B) Weather, Source: GN Agrios, Plant Pathology, Page- 5
- 35. Ans: (D), Diseases caused by fungi, Source: GN Agrios, Plant Pathology, Page- 8
- 36. Ans: (B) Carl Von Linne, Source: GN Agrios, Plant Pathology, Page- 17
- 37. Ans: (C) Smith, Source: GN Agrios, Plant Pathology, Page- 24
- 38. Ans: (D) Viriods, Source: GN Agrios, Plant Pathology, Page- 27
- 39. Ans: (C) Primary infections, Source: GN Agrios, Plant Pathology, Page- 80
- 40. Ans: (B) Parasexuality, Source: GN Agrios, Plant Pathology, Page- 132
- 41. Ans: (B) Attenuation, Source: GN Agrios, Plant Pathology, Page- 133
- 42. Ans: (B) Multiple genes, Source: GN Agrios, Plant Pathology, Page- 136
- 43. Ans: (C) Verticle resistance, Source: GN Agrios, Plant Pathology, Page- 136
- 44. Ans: (B)Tolerance to disease, Source: GN Agrios, Plant Pathology, Page- 139
- 45. Ans: (A) Haustoria, Source: GN Agrios, Plant Pathology, Page- 14
- 46. Ans: (C) indicates that it is able to form perfect sexual spores, Source: GN Agrios, Plant Pathology, Page- 439
- 47. Ans: (A) Poisonous mushrooms
- 48. Ans: (D) Roundworms
- 49. Ans: (D) Rhizopus, Source: GN Agrios, Plant Pathology, Page- 14
- 50. Ans: (A) Plectenchyma
- 51. Ans: (D) All of the above
- 52. Ans: (A) Progametangia, Source: GN Agrios, Plant Pathology, Page- 436
- 53. Ans: (C) Rhizopus sexualis, Source: GN Agrios, Plant Pathology, Page- 435
- 54. Ans: (C) Zymase, Source: GN Agrios, Plant Pathology, Page- 162
- 55. Ans: (D) Both A & B, Source: HC Dube, An introduction to fungi, Page- 481
- 56. Ans: (B) Commensalism, Source: HC Dube, An introduction to fungi, Page- 455
- 57. Ans: (B) Ascomycota, Source: HC Dube, An introduction to fungi, Page- 465
- 58. Ans: (B) Oils & glycogen, Source: GN Agrios, Plant Pathology, Page- 162
- 59. Ans: (D) Ascomycetes
- 60. Ans: (B) *Penicillium roqueforti*, Source: RS Singh, Introduction to principles of Plant Pathology, Page- 3

- 61. Ans: (C) Saprophytes, Source: RS Singh, Introduction to principles of Plant Pathology, Page- 10
- Ans: (A) Disease escape, Source: RS Singh, Introduction to principles of Plant 62. Pathology, Page- 11
- 63. Ans: (A) Incubation period, Source: RS Singh, Introduction to principles of Plant Pathology, Page- 12
- 64. Ans: (A) Endemic, Source: RS Singh, Introduction to principles of Plant Pathology, Page- 39
- Ans: (A) Horizontal Resistance, Source: RS Singh, Introduction to principles of Plant 65. Pathology, Page-11

CHAPTER 3 PLANT MICROBE INTERACTION

1.	_	•	-	_	porthe oryzae for plant infection		
	_	ven below. Choose the w	rong pa				
	i)	mpg1 (Hydrophobin)	-		soria formation		
	ii)	pth 11	-		on of infection peg		
	iii)	Glycerol	-	_	pressure for direct penetration		
	iv)	PMK 1	-		es virulence		
	v)	G- protein genes	-	Conidia	a Production		
	A.	i, ii, iv		В.	ii, iv, v		
	C.	ii, iii, V		D.	i, iv, v		
2.	Effecto	or proteins that function as	cystein	e protea	se inhibitors were first discovered		
	in						
	i)	Fassalora flora – Avr	1	ii)	Cladosporium fulvum – Avr 1		
	iii)	Cladosporium fulvum -	Avr 2	iv)	Passalora fulva – Avr 2		
	v)	Cladosporium fulva – A	Avr 3				
	Á.	iii and iv		B.	i and ii		
	C.	iv and v		D.	only v		
3.	Fungal	pathogenicity signaling g	enes are	·	•		
	i)	Chitin elicitor receptor k					
	ii)	G- protein coding genes	C				
	iii)	cAMP dependent protei	n kinase	genes			
	iv)	Elongation factor recept		-			
	v)	Mitogen activated protein kinase genes					
	Á.	i, iii, iv		B.	i, ii, v		
	C.	ii, iii, iV		D.	11, 111, V		
4.			es the ce		l movement virus was not noticed		
	in						
	Α.	Hibiscus green spot viru	S	B.	Tobacco rattle virus		
	C.	Potato virus X	2	D.	Lettuce necrotic yellow virus		
5.			nt is cor		ut EPS 1 of the <i>Ralstonia</i>		
		cearum causing bacterial					
	i)	EPS 1 is the virulence fa					
	ii)	EPS 1 is a pathogenicity					
	iii)	EPS 1 is a polymer comp					
	<i>)</i>				1 0		
		Guide book of	plant Pa	ithology :	♦ 35		

	iv)	EPS component of fire blight b	acteriu	m is amylovoran				
	v)		ling the	xylem vessels and rupturing of cells				
	A.	due to high osmotic pressure	В.	iiiw				
	C.	i, ii, v	Б. D.	i, ii, iv, v :: :::				
6		i, iii, iV, V		ii, iii, V				
6.		w class of R gene which acts again	-	-				
	A.	NBS-LRR	В.	eIF4E/4G				
7	C.	eIF4K/Z	D.	eIF4F/4H				
7.		ent determinants of Erwinia amy						
	A.	Lipopolysaccharide	В.	Amylovoran				
	C.	Pectin methyl esterase and glu						
	D.	Catechol and hydroxamate sid	_					
8.		stant genes identified for Fusariun		_				
	A.	RGA2 & Ced9	В.	RPS1 & Ced 9c				
	C.	RPW8 & Ced9	D.	RGA1& RGA2				
9.	PWL	PWL (pathogenicity on weeping lovegrass), a small gene family identified in						
	A.	Magnaporthe grisea	В.	Phytophthora infestans				
	C.	Ralstonia solanacearum	D.	Fusarium oxysporum				
10.	Whic	Which is true statement about the <i>Ustilagomaydis</i> pathogen?						
	i)	A tetrapolar mating system is	essentia	l for pathogenicity of the fungus.				
	ii)		can gro	ow as saprophytes in soil and non-				
		pathogenic on plants.						
	iii)			2b20 but not with a2b1 or a1b20.				
	iv)	'a' locus encodes lipopeptide pheromone (Mf) and pheromone receptor						
		(Pr).						
	v)	'b' locus has two open reading	-					
	A.	i,iii,v	В.	i, ii, iv				
	C.	ii, iii, v	D.	All of the above				
11.	Botrytis cinerea a necrotrophic fungus penetrates the leaf tissue by							
	A.							
	В.	B. Melanin present in germlings of the pathogen helps in appressoria formation						
	C.	Membrane associated protein	BcPLS	1				
	D.	The action of cutinase and lipa	ase enzy	mes				
12.	Occu	rrence of cell death during hyper	sensitiv	e response is due to				
	A.	Caspase activity	B.	Proteolytic activity				
	C.	Cellulase activity	D.	Lipase activity				
13.	The s	tability and proper folding of R g	enes dui	ring activation of defense in plants				
	requi	res						
	A.	ABC proteins	В.	Non-structural proteins				
	C.	Chaperone protein complex	D.	Aromatic amino acids				

14.	Tentox	in is a		
	A.	Cyclic tetrapeptide	B.	Cyclic pentapeptide
	C.	Tetrapeptide	D.	Arginine tripeptide
15.	Which	of the following produces a detoxi	fication	enzyme gene which doesn't follow
		or gene concept?		
	A.	Magnaporthe oryzae	<i>B</i> .	Alternaria alternata
	<i>C</i> .	Phytophthora infestans	D.	Cochliobolus heterostrophus
16.				da acts upon which suppresses
		t defence action.	•	•
	A.	Neutralizing hydrogen peroxide		
	B.	Proton pumping activity		
	C.	Suppression of phenyl alanine an	mmonia	lyase activity
	D.	Reducing the phytoalexin produc	ction	
17.	The first	st avirulence gene identified was	the pro	tein ofgene from <i>P</i> .
	syringa	e p.v. glycinea which involve in	synthesi	is of syringolides.
	A.	avr B	B.	avr A
	C.	avr D	D.	avr C
18. Ma	tch the c	correct R gene classes with their	exampl	es.
	i)	Class I – pto	ii)	Class II – pi-ta
	iii)	Class III – Xa21	iv)	Class IV – cf2, cf9
	v)	Class V – RPW8		
	A.	i, iii, V	B.	i, ii, iii
	C.	ii, iv, v	D.	All
19. Rec	eptor el	icitor-complex is formed at plasn	na meml	orane in which of the following?
	A.	Fungi	B.	Bacteria
	C.	Virus	D.	Phytoplasma
20. Wh	ich of th	e following is the final stage of r	apid def	ense response?
	A.	Instant loss of membrane perme	ability	
	B.	Fortification of the cell wall		
		Hypersensitive response		
		Phytoalexin production around of		
21. Wh	at is the	time taken for accumulation of p	hytoalex	kin?
	A.	Minutes	B.	Seconds
	C.	Hours	D.	None
22. Wh	ich of th	e following phytoalexin is produc	ced by p	otato tuber?
	A.	Rishitin	B.	Lubimin
	C.	Solavetivone	D.	All the above
23. Ho	w many	families of PRPs have been offic	ially rec	ognized by Van Loon et al., 2006?
	A.	12	B.	13
	C.	17	D.	15

24.	Salicy	/lic acid biosynthesis in plants t	akes place	by which pathway?
	Α.	· · · · · · · · · · · · · · · · · · ·	B.	Phenyl propanoid pathway
	C.	Both A and B	D.	None of the above
25.		h of the following acts as signal		
		ance)?	8	(
	A.	Salicylic acid	B.	Jasmonic acid
	C.	Ethylene	D.	Both B and C
26.	The ty	wo pathways of SAR and ISR o	depend on	which regulatory protein?
	A.	NPR1	В.	NPS1
	C.	PRPs	D.	None of the above
27.	Which	h of the following defense com	pounds are	e produced due to expression of
		2.2 gene during SAR?		
		Plant defensins	B.	Thionins
	C.	Both A and B	D.	None of the above
28.	Which	h of the following defense com	pounds are	e produced due to expression of
		I gene during SAR?	•	
		Plant defensins	B.	Thionins
	C.	Both A and B	D.	None of the above
29.	Which	h of the following acts as signalir	ng molecul	e for the production of PIN proteins?
	A.	Salicylic acid	В.	Jasmonic acid
	C.	Ethylene	D.	Both B and C
30.	What	is the last step in pin-gene expr	ression?	
	A.	JA production	B.	Ethylene production
	C.	SA production	D.	None of the above
31.	Whic	h of the following are defense c	ompounds	s in plants?
	A.	PRPs	B.	Plant defensins and Thionins
	C.	Thionins	D.	All the above
32.	Who	gave the gene for gene hypothes	sis to expl	ain the specificity of interactions in
	flax/ri	ust?	-	
	A.	Flor (1955)	В.	Biffen's (1905)
	C.	Van Loon (1997)	D.	None
33.	Non-s	specific resistance involves whi	ch of the f	Following genes?
	A.	Pathogenicity genes	В.	Defense genes
	C.	Both A and B	D.	None
34.	Amor	ng the following class of R prote	ein which	constitute the largest class?
	A.	Cfx	В.	NBS-LRRs
	C.	PWR8	D.	Pto
35. Wh	nich of t	the following is the first R gene	located, is	solated and sequenced from maize?
	A.	Hm1	В.	Pto
	C.	Cf5	D.	Cf4

36.	Tabtox	in is produced by which organism	1 2					
30.	A. Pseudomonas syringae p.v. tabaci							
	В.	Cochliobolus victoriae	Duci					
	Б. С.	C. carbonum	D.	C. heterosporus				
37.		in is produced by which organism		C. hererosporus				
37.	A.	Cochliobolus carbonum	и: В.	Cochliobolus victoriae				
	C.	Cochliobolus heterosporus	Б.	Coentiovoius victoriae				
	D.	Pseudomonas syringae p.v. ta	haai					
38.		is produced by which organism?						
36.	1-10XIII A.	Cochliobolus heterostrophus		Cochliobolus carbonum				
	C.	Cochliobolus victoriae	Б. D.	None				
39.				tly by pathogen-encoded effectors,				
39.								
		t by direct recognition. This hypo		Guard model				
		Gene for gene	B. D.					
40		Decoy model		None of the above				
40.		RR-mediated disease resistance is		•				
	A.	Biotrophs	B.	Hemi-biotrophs				
4.1	C.	Necrotrophs	D.	Both A and B				
41.		whether true or false; ETI is an ac						
		ng in disease resistance and, usua	lly, a hy _l	persensitive cell death response				
	` ,	t the infection site						
	A.	True						
	В.	False						
	42.			ne, a jasmonic acid mimic that				
	A.	Suppresses JA mediated defence						
		B. Suppresses SA mediated defence and induce stomatal opening						
	C. Suppresses JA mediated defence and induce stomatal closing							
	D.	Suppresses SA mediated defend		•				
43.			ses, med	liated in part by a micro-RNA that				
		induced during						
	A.	Abscisic-acid-mediated stress r						
	В.	Gibberellic-acid-mediated stres	s respon	ses				
	C.	Jasmonic-acid-mediated stress	response	es				
	D.	Salicylic-acid-mediated stress re	esponse	S				
44.	Biotype	es of pathogens that vary in their pat	ttern of c	ompatible or incompatible reactions				
	on a se	et of host plant cultivars are refer	red to as	5				
	A.	Pathovar	B.	Cultivar				
	C.	Race	D.	None of the above				

45.		- ·	lirectly to	agents, called, that initiate
	the H	R in incompatible plants		
	A.	Effectors	В.	Elicitors
	C.	Phytoalexins	D.	PAMPs
46.	The fi	irst microbial avirulence gene v		
	A.	Race 6 of Pseudomonas syn	ringae p.	v. pisi
	В.	Race 2 of Pseudomonas syn	ringae p.	v. pisi
	C.	Race 6 of Pseudomonas sy	ringae p.	v. glycinea
	D.	Race 2 of Pseudomonas sy	ringae p.	v. glycinea
47.	The fi	irst microbial avirulence gene v		- ·
	A.	Jones	B.	Stackman
	C.	Walker	D.	Staskawicz
48.	The fi	irst microbial avirulence gene,	avrA enco	ode a single protein product of
	A.	100kd	B.	200kd
	C.	300kd	D.	400kd
49.	The e	licitor-receptor model is given l	ov	
-	A.	Brown and Harvey	В.	Gabriel and Rolfe
	C.	Bawden and Piere	D.	Black and Brakke
50.	State			in linseed is inherited as a dominant
		cter although in some genes the		
	Α.	True	В.	False
51.	Them		ed microbi	ota as a functional entity is called
	Α.	Holobiont	В.	Heterobiont
	C.	Microbiont	D.	None of the above
52.		-negative bacteria to monitor th		
J 2.		ction of the signaling molecule.	_	oparation denotites anough the
	A.	Dihydroacetone	В.	РНВ
	C.	N-acyl-l-homoserine lactone		1112
	D.	Erthritol	(11112)	
53.			in direct	antagonistic interactions mediated
		ntact-dependent killing mechan		_
	A.	Type I secretion system	В.	Type II secretion system
	C.	Type III secretion system	D.	Type IV secretion system
54.				s eukaryotes as a vector, is called
<i>J</i> 1.	A.	Bacterial highway	В.	Fungal highway
	C.	Bacterial-fungal highway	D.	None of the above
55.		ee of synchronization is highest		rone of the above
55.	A.	Necrotrophs	В.	Semi-biotrophs
	C.	Biotrophs	Б. D.	Symbionts
	C .	Pronobing	<i>υ</i> .	Symotoms

56. Protein for protein hypothesis was proposed by..... A. H.H.Flor Vander Plank Sequeira D. C. Clarke and Knox 57. Which genes code for synthesis of substances involved in the host parasite interaction? Producer genes В. Receptor genes A. C. Senor genes D. Integrator Which genes bind agents that induce a specific pattern of activity in the genome? 58. Producer genes Receptor genes В. Sensor genes Integrator C. D.

CHAPTER 14 PLANT MICROBE INTERACTION

- 1. (Ans: B (ii, iv, v), Source: G. N. Agrios, Plant Pathology, Page No. 144,146.)
- 2. (Ans: A (iii and iv), Source: *Ustilagomaydis* effectors and its impact on virulence, Lanver *et al.* (2017), Nature reviews, Page No. 413.
- 3. (Ans: D (ii, iii, v), Source: G. N. Agrios, Plant Pathology, Page No. 146.)
- 4. (Ans: C (Potato virus X), Recent advances in research of plant virus movement mediated by triple gene block, Solovyev *et al.* (2012) Mini Review, *Frontiers in plant science*.)
- 5. (Ans: C (i, iii, iv, v), Source: G. N. Agrios. Plant Pathology, Page No. 148.)
- 6. (Ans: B (eIF4E/4G), Eukayotic translation initiation factors shape RNA viruses resistance in plants, Shopan *et al.* (2020), *Horticultural plant journal.*)
- 7. (Ans: D (Catechol and hydroxamate siderophores), Source: G.N. Agrios. Plant Pathology, Page No. 149.)
- 8. (Ans: A (RGA2 & Ced9), Source: Transgenic Cavendish banana with resistance to Fusarium wilt tropical race 4 by Dale *et al.* (2017), *Nature communications*.)
- 9. (Ans: A (*Magnaporthe grisea*), Source: Molecular plant pathology by Dickinson. Page No. 77.)
- 10. (Ans: D (All of the above), Source: Molecular plant pathology by Dickinson. Page No. 81.)
- 11. (Ans: C (Membrane associated protein BcPLS 1), Source: Licensed to kill: The lifestyle of a necrotrophic plant pathogen Review, Jan. A. L. VanKan (2006). Trends in plant science)
- 12. **(Ans: A (Caspase activity)**, Source: Immune receptors and co-receptors in antiviral innate immunity in plants. Gouveia *et al.* (2016). Frontiers in microbiology.)
- 13. **(Ans: C (Chaperone protein complex)**, Source: Immune receptors and coreceptors in antiviral innate immunity in plants. Gouveia *et al.* (2016). Frontiers in microbiology.)
- 14. (Ans: A (Cyclic tetrapeptide), Source: Plant pathology, G. N. Agrios.

 Page No. 191.) Guide book of plant Pathology ❖ 42

- 15. (Ans: D (*Cochliobolus heterostrophus*), Source: Plant pathology, G. N. Agrios. Page No. 224.)
- 16. (Ans: B (Proton pumping activity), Source: Plant pathology, G. N. Agrios. Page No. 203.)
- 17. (Ans: C (avr D), Source: Plant pathology, G. N. Agrios. Page No. 223.)
- 18. (Ans: A (i, iii, v), Source: Plant pathology, G. N. Agrios. Page No. 224.)
- 19. (Ans: A (Fungi), Source: HC Dube: Modern Plant Pathology, page: 202)
- 20. (Ans: C (Hypersensitive response), Source: HC Dube: Modern Plant Pathology, page: 204)
- 21. (Ans: C (Hours), Source: HC Dube: Modern Plant Pathology, page: 205)
- 22. (Ans: D (All the above), Source: HC Dube: Modern Plant Pathology, page: 206)
- 23. (Ans: C (17), Source: HC Dube: Modern Plant Pathology, page: 208)
- 24. (Ans: C (Both A and B), Source: HC Dube: Modern Plant Pathology, page: 211)
- 25. (Ans: D (Both B and C), Source: HC Dube: Modern Plant Pathology, page: 212)
- 26. (Ans: A (NPR1), Source: HC Dube: Modern Plant Pathology, page: 212)
- 27. **(Ans: A (Plant defensins)**, Source: HC Dube: Modern Plant Pathology, page: 213)
- 28. (Ans: B (Thionins), Source: HC Dube: Modern Plant Pathology, page: 213)
- 29. (Ans: D (Both B and C), Source: HC Dube: Modern Plant Pathology, page: 214)
- 30. (Ans: A (JA production), Source: HC Dube: Modern Plant Pathology, page: 215)
- 31. (Ans: D (All the above), Source: HC Dube: Modern Plant Pathology, page: 216)
- 32. (Ans: A (Flor (1955)), Source: HC Dube: Modern Plant Pathology, page: 222)
- 33. (Ans: C (Both A and B), Source: HC Dube: Modern Plant Pathology, page: 226)
- 34. (Ans: B (NBS-LRRs), Source: HC Dube: Modern Plant Pathology, page: 226)
- 35. (Ans: A (*Hm1*), Source: G. N. Agrios: Plant Pathology, page: 156)
- 36. **(Ans: A (***Pseudomonas syringae* **p.v.** *tabaci***)**, Source: G. N. Agrios: Plant Pathology, page: 191)
- 37. **(Ans: A (***Cochliobolus carbonum***)**, Source: G. N. Agrios: Plant Pathology, page: 194)
- 38. **(Ans: A (***Cochliobolus heterosporus***)**, Source: G. N. Agrios: Plant Pathology, page: 194)
- 39. (Ans: B (Guard model), Source: 'The plant immune system' by Jones and Dangl)
- 40. (Ans: D (Both A and B), Source: 'The plant immune system' by Jones and Dangl)
- 41. (Ans: A (True), Source: 'The plant immune system' by Jones and Dangl)

 Guide book of plant Pathology ♦ 43

- 42. (Ans: B (Suppresses SA mediated defence and induce stomatal opening), Source: 'The plant immune system' by Jones and Dangl)
- 43. (Ans: A (Abscisic-acid-mediated stress responses), Source: 'The plant immune system' by Jones and Dangl)
- 44. (Ans: C (Race), Source: 'Gene for gene complementarity in plant pathogen interactions' by Keen, page 448)
- 45. **(Ans: B (Elicitors)**, Source: 'Gene for gene complementarity in plant pathogen interactions' by Keen, page 449)
- 46. (Ans: C (Race 6 of *Pseudomonas syringae* p.v. *glycinea*), Source: 'Gene for gene complementarity in plant pathogen interactions' by Keen, page 450)
- 47. (Ans: D (Staskawicz), Source: 'Gene for gene complementarity in plant pathogen interactions' by Keen, page 450)
- 48. (Ans: A (100kd), Source: 'Gene for gene complementarity in plant pathogen interactions' by Keen, page 450)
- 49. (Ans: B (Gabriel and Rolfe), Source: 'Gene for gene complementarity in plant pathogen interactions' by Keen, page 451)
- 50. (Ans: A (True), Source: RS Singh, Introduction to principles of Plant Pathology, Page- 212)
- 51. (**Ans: A (Holobiont)**, Source: 'Microbial interactions within the plant holobiont' by Hassani *et al.*, 2018, page 1)
- 52. **(Ans: C (N-acyl-l-homoserine lactone (AHL))**, Source: 'Microbial interactions within the plant holobiont' by Hassani *et al.*, 2018, page 5)
- 53. **(Ans: D (Type IV secretion system)**, Source: 'Microbial interactions within the plant holobiont' by Hassani *et al.*, 2018, page 6)
- 54. **(Ans: B (Fungal highway)**, Source: 'Microbial interactions within the plant holobiont' by Hassani *et al.*, 2018, page 5)
- 55. (Ans: D (Symbionts), Source: RS Singh, Introduction to principles of Plant Pathology, Page-211)
- 56. (Ans: B (Vander Plank), Source: RS Singh, Introduction to principles of Plant Pathology, Page- 228)
- 57. (Ans: A (Producer gene), Source: RS Singh, Introduction to principles of Plant Pathology, Page- 226)
- 58. (Ans: C (Sensor genes), Source: RS Singh, Introduction to principles of Plant Pathology, Page- 226)

 Guide book of plant Pathology ♦ 44

CHAPTER 4 FUNDAMENTALS OF MYCOLOGY

1.	The ro	oman emperor Cladius Caesar wa	s murde	ered by his wife in 54 A.D by mixing
	a deco	oction of the mushroom		
	A.	Amanita phalloides	В.	Aspergillus flavus
	C.	Aspergillus nidulans	D.	Agaricusbisporus
2.	Who r	nade an extensive study of fungi	and dis	scovered that spores were the
		luctive structures of fungi?		•
	A.	Anton de Bary	В.	Antonio Micheli
	C.	Louis Pasteur	D.	Pontecorvo and Roper
3.	Late b	light of potato occurred in which	year ar	
	A.	1842, Ireland	В.	1823, Switzerland
	C.	1845, Ireland	D.	1850, Ireland
4.	Penici	llin was discovered by which of t	he follo	wing scientist
	A.	Alexander Fleming, 1928	В.	Louis pastuer, 1920
	C.	Robert Koch ,1912	D.	Antonio Micheli, 1729
5.	Which	n of the following is known as B	aker's a	
	A.	Saccharomyces paradoxus	B.	Saccharomyces uvarum
	C.	Saccharomyces cerevisiae	D.	Aspergillus nidulans
6.	Which	n of the following are known as C		
	A.	Rust	B.	Powdery mildew and downy mildew
	C.	Both A and B	D.	None
7.	The m	ode of nutrition in fungi is		
	A.	Heterotrophic and non-absorpt	iveB.	Autotrophic and absorptive
	C.	Heterotrophic and absorptive	D.	Ingestion type
8.	The ce	ell wall of fungi is made up of wh	ich of tl	ne following
	A.	Polysaccharides	В.	Nucleo-proteins
	C.	Chitin and cellulose	D.	All of the above
9.	One o	f the important characteristics of	basidio	emycetes fungi is
	A.	Karyochoresis	B.	Dolipore septum
	C.	Both A and B	D.	None
10.	The u	nseptate hyphae have the nuclei s	cattered	d in the cytoplasm. This condition is
	known	ı as		· -
	A.	Holocytic condition	B.	Coenocytic condition
	C.	Non coenocytic condition	D.	None of the above
		Guide book of plant I	Patholog	y ♦ 45

11.	Chitin	is a polymer of which of the follow	wing					
	A.	Polysaccharides	В.	Polymer of N- acetyl glucosamine units				
	C.	Beta glucose units	D.	All of the above				
12.	The co	ondition in which two nuclei of opp	osite st					
		fuse with each other is known as						
	A.	Homokaryon	B.	Dikaryon				
	C.	Anamorphic	D.	Telomorphic				
13.	Plasm	logamy is		•				
	A.	Fusion between 2 asexual cells	B.	Fusion between 2 sexual cells				
	C.	Fusion between similar cells	D.	Fusion between 2 dissimilar cells				
14.	Karyo	gamy is fusion between						
	A.	2 nuclei	В.	2 cells				
	C.	2 vegetative cells	D.	None of the above				
15.	Fusion	n between gametangia is called						
	A.	Plasmogamy	В.	Karyogamy				
	C.	Gametangiogamy	D.	None of the above				
16.	Fusion	n between 2 similar gametangia re	sults in	a zygote, which is called				
	A.	Zygospore	B.	Oospore				
	C.	Zoospore	D.	None of the above				
17.	Zygot	e formed by the fusion between mo	orpholog	gically distinct gametangia				
	is call	ed as						
	A.	Zygospore	В.	Oospore				
	C.	Zoospore	D.	None of the above				
18.	Copro	ophilous fungi grow on which of the		ing				
	A.	Lignin	В.	Dung				
	C.	Paper	D.	Grass				
19.	Found	ler of modern Mycology and the fa						
	A.	Louis Pasteur	В.	de Bary				
	C.	Antonio Micheli	D.	E.J Butler				
20.		theory was given by						
	A.	Louis Pasteur	В.	Robert Koch				
	C.	Anton van leeuwenhoek	D.	De Bary				
21.	•	ium brassicae is the vector of vir						
	A.	Lettuce big vein virus (LBVV)		Tobacco necrosis virus (TNV)				
	C.	Tobacco stunt virus (TSV)	D.	All of the above				
22.	_	henomenon of heterothallism was	discove	red in Mucor in 1904 by which				
		following scientist	_					
	A.	Louis Pasteur	В.	A.F Blakeslee				
	C.	Anton van leeuwenhoek	D.	De Bary				

23.	Fumaric acid is pro	duced by		
23.	A. Rhizopus	duced by	B.	Mucor
	C. Aspergillus		Б. D.	Fusarium
24.	1 0			ir like outgrowth called as
4.	A. Crook cell	isually globulal alic	B.	Trichogyne
	C. Atrichogyn	2	Б. D.	None of the above
25				
25.	er – like cell known as		pnae eroi	ngates and bends to form a hook or
Crozie	A. Crook cell		B.	Trichogyne
		2	Б. D.	None of the above
26	23			None of the above
26.	The entire body of	_		Th11
	A. Plasmodium	Ω	В.	Thallus
27	C. Rhizobium	11 €	D.	None of the above
27.	The ribosomes of a	II fungi are	D	700
	A. 80S		В.	70S
•	C. 85S		D.	908
28.	Which of the follow	•		
	A. Scopulario		<i>B</i> .	Aspergillus spp.
	•	neca resinae	D.	Penicillium spp.
29.	The disease caused	by Aflatoxins		
	A. Hepatitis		В.	Cardiac beri-beri in man
	C. Paspalum s		D.	Aflatoxicoses
30.	The disease caused	by Citreovirdin		
	A. Hepatitis		В.	Cardiac beri-beri in man
	C. Paspalum s	staggers	D.	Aflatoxicoses
31.	Aflatoxins are prod	uced by		
	A. Penicillium	ı oxalicum	B.	Aspergillus niger
	C. Aspergillus	s flavus	D.	None of the above
32.	Agaru perfume is o	btained by modula	ting woo	od of the tree Aguilaria agallocha
with t	he fungus			
	A. Fistulina h	iepatica	B.	Epicoccum granulatum
	C. Serpula la	•	D.	Chaetomium globosum
33.			carvo and	d Roper in 1952 in the fungus
A.				Aspergillus nidulans
<i>C</i> .	Aspergillus flavus		D.	None of the above
34.	Foot rot of cereals	is caused by		
		lus miyabeanus	B.	Cochliobolus heterostrophus
	C. Cochliobol	•	D.	Cochliobolus victoriae
35.	The term "smut" in			223
·	A. Dirty		B.	Ugly
	· · · · · · · · · · · · · · · · · ·		⊷.	~ _ _

C	· ·	Unattractive and ———	D.	None of the above are absent in smut
f	ungi.	und		are assent in sinat
	۱.	Parenthesomes	B.	Clamp connection
C		Both (A) and (B)	D.	None of the above
		nut fungi have a uniform life cycle		
	١.	A saprobic, yeast-like haplopha		8
В	3.	A parasitic dikaryophase		
C	· ·	Diploid phase	D.	All of the above
E	Intorr	hizomycetes is represented by o	rder	
A		Entorrhizales	B.	Ustilaginales
(7.	Urocystidales	D.	Tilletiales
Ί	he pr	omycelium, which bears the basi	diospore	es can be called as
	۱.	Hypobasidium	В.	Probasidium
C	1.	Epibasidium	D.	None of the above
Τ	he pr	ocess of plasmogamy in fungi is	referred	as
Α	١.	Diploidization	B.	Dikaryotization
C	1.	Gonotoconts	D.	Syncaryon
Τ	he sh	ape of oogonium is		
A	١.	Round	B.	Elongated
C		Globose	D.	Square
Τ	he bla	ast disease of rice is caused by		_
A	!.	Magnaporthe grisea	B.	Helminthosporium oryzae
(7	Giberella fujikuroi	D.	Xanthomonas oryzae
V	Vhich	of the following rice disease is	known'	'Rice fever disease"?
A	١.	Bacterial leaf blight	B.	Blast disease
C		Brown leaf spot	D.	Bakane disease
F	Rust of	f pea is caused by		
A	!.	Uromyces appendiculatus	B.	Uromyces fabae
(7	Uromyces ciceris		
L).	Gymnosporangium juniper-vi	irginian	ae
C	Cedar-	Apple rust is caused by		
A	!.	Uromyces appendiculatus	B.	Uromyces fabae
(7.	Uromyces ciceris		
L).	Gymnosporangium juniper-vi	irginian	ae
S	mall	hair like growth called mastig	gonemes	is found in?
	١.	Tinsel typer flagella	В.	whiplash type flagella
C	2.	Both a and b	D.	Not found in flagella

47.	Exan	aple of systemic fungicide?	•		
	A.	Mancozeb	B.	Carbendazim	
	C.	Copper oxychloride	D.	Dinocap	
48.	A spe	ecial spores in which karyo	ogamy and	meiosis occurs called?	
	A.	Teliospore	В.	Aeciospores	
	C.	Uredospore	D.	Basidiospore	
49.	In Ba	asidiomycota, club shaped	structure l	bearing basidiospore on pointed	
	proje	ection called			
	A.	Basidium	В.	Sterigmata	
	C.	Parenthesome	D.	Promycelium	
50.	In Bl	lack stem rust of wheat, w	hich spore	is called repeating spore?	
	A.	Teliospore	B.	Aeciospores	
	C.	Uredospore	D.	Basidiospore	
51.	The a	anthracnose fungus belong	gs to genus	?	
	A.	Aspergillus	B.	Colletotrichum	
	C.	Fusarium	D.	Alternaria	
52.	The c	conidia of genus which hav	e both tra	nsverse as well as longitudinal	
	septa?				
	A)		B)	Colletotrichum	
	C)	Fusarium	D)	Alternaria	
53.	Dry S	Spores is formed in which	,		
	A)	Rhizopus	В)	Mucor	
	C)	Pilobolus	D)	None of the above	
54.	In oo	omycetes the life cycle is?	,		
	A)	Haploid	B)	Haploid-Diploid	
	C)	Diploid	D)	Asexual	
55.	Type	of ascocarp where hymeni	ium layer i	s absent?	
	A)	Perithecium	B)	Cleistothecium	
	C)	Apothecium	D)	None of the above	
56.	Shot	-gun fungus is referred to	which gen		
	A)	Rhizopus	В)	Mucor	
	C)	Pilobolus	D)	None of the above	
57.	Fung	us known as death cap?	,		
	_	Conocybe filaris	B)	Amanita phalloides	
	C)	Galerina marginata	D)	Cortinarius species	
58.	,	tific name of "Button Mus	,	1	
	A.	Agaricus bisporus	B.	Agaricus campestris	
	C.	Agaricus arvensis	D.	Agaricus augustus	
59.		9		mination of teliospore are?	
	A)	2	В)	4	
	C)	8	Ď	None of the above	
	,	Guide book of pla	ant Patholog		

In	ascus formation, no. of nuclei	in final d	ivision?
A)	2	B)	4
C)	8	D	16
75%	% of all fungi belong to which	pylum?	
A.	Basidiomycota	В.	Deuteromycota
C.	Mastigomycota	D.	Ascomycota
Bro	own rust of wheat is caused b	y ?	•
A.	Puccinia recondita	В.	Puccinia graminis tritici
C.	Puccinia striiformis	D.	Puccinia malvacearum
Aec	ciospores of black rust of who	eat are pr	oduced on?
A.	Wheat	В.	Barberry
C.	Dandelion	D.	Crabgrass
Ure	edospores are?		
A.	Triple celled	В.	Bi-celled
C.	Single celled	D.	Tetra celled
Ste	rile hymenium layer which oi	riginate fr	om the base of the cavity are
	own as?	8	·
A.	Trichogyne	В.	Rhizoids
C.	Periphyses	D.	Paraphyses
			but constricts like a dumbbell during
	clear division. This phenomenon		8
A)	Meiosis	B) [*]	Karyogamy
C)	Karyochoresis	D)	Parasexuality
,	parasexuality, genetic recombina	,	•
A)	Meiosis	B)	Mitotic crossing over
C)	Karyogamy	D)	None of the above
	lanospores are mostly formed in	- /	
A)	Aquatic fungi	B)	Terrestrial fungi
C)	Amphibious fungi	D)	None of the above
	e flagellum of fungi has a typical		1,0110 01 1110 1100 1
A)	9+2 Structure	B)	9+3 structure
C)	9+1 structure	D)	9+4 structure
	e germinating teliospore is called		,
	Epibasidium	B)	Hypobasidium
C)	Basidiospores	D)	Basidial apparatus
,	enthesome is found in	2)	Businiar apparatus
A)	Ascomycota	B)	Basidiomycota
C)	Zygomycota	D)	None of the above
	edospores in <i>Puccinia graminis</i>	/	Tione of the doore
A)	Oval with four equatorial g		
11)	O vai with four equatorial g	cim porcs	

D) Oval with 4 scattered germ pores 73. Physiological races is given by, A) Erikson B) Stakman and Levine C) K.C. Mehta D) None of the above							
A) Erikson B) Stakman and Levine C) K.C. Mehta D) None of the above							
C) K.C. Mehta D) None of the above							
74. Loose smut of wheat is							
A) Internally seed borne B) Soil borne							
C) Externally seed borne D) None of the above							
75. Imperfect fungi multiply only by,							
A) Conidia B) Ascospores							
C) Basidiospores D) Teliospores							
76. Dimorphism is observed in the order							
A) Agaricales B) Uriedinales							
C) Pezizales D) Saprolegniales							
Plasmodiophora brassicae is							
A) Saprophyte B) Facultative							
C) Obligate D) None of the above							
78. The ergot alkaloids is	The ergot alkaloids is						
A) Lysergic acid diethylamide B) Morphine							
C) Atropine D) Quinine							
Turkey X disease is caused due to the mycotoxin							
A) ochratoxin B) Aflatoxin							
C) Vomitoxin D) None of the above							
Fused conidiophores in Ascomycetes are called							
A) Synnema B) Coremium							
C) Sporodochium D) Sporangia							
The hair like outgrowth in ascogonia is called							
A) Ascogenous hyphae B) Trichogyne							
C) epiplasm D) None of the above							
82. Storage fungi							
A) Penicillium B) Phytophthora							
C) Alternaria D) Aspergillus							
83. The antibiotic griseofulvin is produced by							
A) Penicillium notatum B) Penicillium griseoful	lvum						
C) P. roqueforti D) P. camemberti							
84. The most common type of life cycle found in majority of fungi and ascor	nycetes is						
A) Asexual cycle B) Haploid cycle							

Round with 7-10 scattered germ pores

B)

	C)	Haploid cycle with restricted di	karyon				
	D)	Dikaryotic cycle					
85.	Haploi	loid-diploid cycle, a characteristic of algae, occurs only in which of the two					
groups	of fungi	?					
	A)	Blastocladiales and Saccharom	yces cer	revisiae			
	B)) Rhizophydiales and Spizellomycetales					
	C)	Blastocladiales and Rhizophydia	ales				
	D)	None of the above					
86.	In which	ch of the fungus, parasexuality w	as demo	onstrated?			
	A)	Aspergillus and Penicillium	B)	Schizosaccharomyces			
	C)	Oomyctes and Hyphochytriomy	ycetes				
	D)	Allomyces					
87.	Choose	e the correct statement with refer	rence to	the characteristics of the phylum			
	Basidio	omycota.					
	A)	It produces basidiospores.					
	B)	Formation of clamp connection	s on the	dikaryotic phase.			
	C)	The presence of the dolipore se	pta				
	D)	All of the above					
88.	The or	der Erysiphales comes under whi	ch phylu	ım?			
	A)	Basidiomycota	B)	Ascomycota			
	C)	Chytridiomycota	D)	Zygomycota			
89.			n the fu	sion of two nuclei from different			
strains	of the s	ame fungi?					
	A)	Ascospore	B)	Basidiospore			
	C)	Blastospore	D)	Conidiospore			
90.	Basidi	ospores have a minute projection	near the	point of attachment to the sterigma			
is kno	wn as –						
	A)	Promycelium	B)	Sterigmata			
	C)	Clamp connection	D)	Hilar appendix			
91.		fungal genus is commonly know	n as 'sho				
	A)	Aspergillus	B)	Copropus			
	C)	Pilobolus	D)	Botrytis			
92.	Circad	ian rhythmic phenomenon is four	nd in –				
	A)	Phytophthora	B)	Pilobolus			
	C)	Cercospora	D)	Coprinus			
93.	Dimor	phism or diplanetism is a charact	eristic fe				
	A)	Mucor	B)	Saprolegnia			
	C)	Aspergillus	D)	Alternaria			
94.		e the correct statement with refe	rence to	the characteristics features of			
	Oomy						
	i)	Diploid somatic phase	\				
		Guide book of plant P	athology	♦ 52			

	ii)	Laterally hiflagellate zoospores	with one	e tincel type flagellum		
	iii)	Laterally biflagellate zoospores with one tinsel type flagellum. Mycolaminarin as storage product				
	iv)	Cell wall made of glucan-cellulose.				
	A.	i and ii are correct.	В.	ii and iii correct.		
	C.	Only iii is correct.	D.	i, ii, iii and iv are correct.		
95.		olar heterothallism is mostly seer				
<i>75</i> .	A)	Ascomycota	B)	Basidiomycota		
	C)	Oomycota	D)	Zygomycota		
96.		sk shaped asexual fruiting body of	/	• • •		
<i>7</i> 0.	A)	Acervulus	B)	Pycnidia		
	C)	Sporodochia	D)	Synnema		
97.				omycotina are included under the		
<i>)</i>		Basidiomycota?	171garre	omycoma are meradea ander the		
	A.	Agaricomycetes, Dacrymycetes	Treme	llomycetes		
	В.	Agaricomycetes, Dacrymycetes				
	C.	Agaricomycetes, Tremellomyce				
	D.	Exobasidiomycetes, Agaricomy		•		
98.		subphylum is regarded as the cro		• •		
,	A.	Pezizomycotina	B.	Agaricomycotina		
	C.	Pucciniomycotina	D.	Ustilaginomycotina		
99.		plum disease of plum fruits is ca		.		
	Taphrin	-				
	A.	Taphrina deformans	В.	Taphrina pruni		
	<i>C</i> .	Taphrina epiphylla	D.	None of the above		
100.	Choose		ence to	the characteristics of the phylum		
		iomycota?		1 3		
	i)	They are the smallest, simplest a	and most	t primitive fungi.		
	ii)	•		single posterior whiplash flagellum.		
	iii)	-	-	n oval multinucleate cell or a small		
	,	elongated hypha	•			
	iv)	The Laterally biflagellate zoosp	ores wit	h one tinsel type flagellum.		
	Á.	i and ii are correct.	B.	ii and iii are correct		
	C.	i, ii and iii are correct.	D.	All the statements are correct.		
101.Tw	o allele	or bipolar heterothallism is found	in?			
	A.	Mucorales (Mucor, Rhizopus, I		yces)		
	B.	Ascomycota (Neurospora, Asco	obolous)		
	C.	Both Mucorales and Ascomyco	ta			
	D.	None of the above.				
102. W	hite blis	ters and downy mildew diseases	are caus	sed by which order of the fungus?		
	A.	Pythiales	B.	Saprolegniales		
	C.	Peronosporales	D.	Phallales.		
	Guide book of plant Pathology ♦ 53					

103. Which is the second largest rust genus with 800 species?			
A.	Uromyces	В.	Melampsora
C.	Puccinia	D.	Gymnosporangium
104. Who is re	egarded as the father of Indian my	cology?	
A)	E.F. smith	B)	J.F. Dastur
C)	B.B. Mundkur	D)	E.J. Butler
105. Parasexu	ality was first discovered by		
A)	Pontecarvo	B)	Erikson
C)	De Bary	D)	Robert Koch
106. Which o	ne of the following is referred to	as water	moulds?
A)	Oomycetes	B)	Zygomycetes
C)	Ascomycetes	D)	basidiomycetes
107.A motile a	asexual spore that uses a flagellun	n for loca	
A)	Ospores	B)	Zygospores
C)	Zoospores	D)	Sporangiospores
108. Dolipore	Septum is found in	ŕ	
A)	Ascomycetes	B)	Zygomycetes
C)	Basidiomycetes	D)	Deuteromycetes
109. Basidiosp	oores are	ŕ	•
A)	Diploid	B)	Polyploid
C)	Haploid	D)	None of the above
	al phenomenon was discovered in	which o	f the following
A)	Aspergillus niger	B)	A. nidulans
C)	A. glauces	D)	A. fumigates
111. which one	e of the following types of reprodu	iction is	found in Chytridiomycetes?
A)	Sexual	B)	Asexual
C)	Both A and B	D)	Parasexual
112. Chlamyd	ospores are produced always by	ŕ	
A)	Primary mycelium	B)	Secondary mycelium
C)	Tertiary mycelium	D)	None of the above
113. Puccinia	graministritici produces the foll	owing s	pores form on Barberry vulgaris
A)	Pycnia + Aecia	B)	Only aecia
C)	Only pycnia	D)	Uredial + Telial
114. The fungi		s to whic	h of the following fungal divisions?
A)	Ascomycota	B)	Basidiomycota
C)	Deuteromycota	D)	Zygomycota
115. which of	the following fungi is known as"	weed of	
A)	Aspergillus	B)	Nurospora
C)	Both (a) and (b)	D)	None of the above

	leistothe teristics	<u>c</u>	ring defi	nite appendages with coiled tips is
Ciiai ac	A)	Uncinula	B)	Erysiphe
	C)	Sphaerotheca	D)	Phyllactinia Phyllactinia
117 TI	,	-	,	· ·
11/.11		er of ascospore produced in a typ		
	A)	4	B)	8
110 D	C)	innumerable	D)	12
118.K		pathogen perfect stage is	D.)	16
		Pyriculariaoryzae	B)	Magnaporthe grisea
		Helminthosporiumoryzae	D)	
119. T		fungus <i>Puccinia graminis tritic</i> i		_
	A)	Stomata	B)	Lenticles
	C)	Trichomes	D)	Hydathodes
120.St	erile thre	eads arises at the base of the peri	thecium,	, upward direction between asci
	A)	Periphysis	B)	Paraphysis
	C)	Periphysoid	D)	None of the above
121.Tl	he sexual	spore of Pythium aphaniderma	atum is	
	A)	Zoospore	B)	Zygospore
	C)	Oospore	D)	Ascospore
122.TI	he princip	oal method of ontrolling plant dis	ease are	•
	A)		B)	Exclusion
	C)	Eradication	D)	All the above
123. W	,	e of the following is most deadlie	,	
	A)	Amanita muscaria	<i>B</i>)	Agaricusbisporus
	C)	Pleurotus spp.	D)	Lentinula edodes
124. W		own as the father of Tropical pla		
	A)	NA Cobb	B)	Anton de Bary
	$C^{'}$)	HM Ward	$\stackrel{'}{D}$	E M Fries
125.	/	st complete genome sequencing	/	
	A.	Magnaporthe grisea	В.	
	C.	Phytophthora infestans	D.	Puccinia graminis
126.		a Great grandfather of Phytopat		
	Α.	Pier Antonio Micheli	В.	Matheiu Du Tillet
		E M Fries	D.	
127.		oined the term "Vertifolia effect"		Deca weimlock
127.	A.	J. C. Luthra	B.	Pontecorvo
	C.	Vander Plank	D.	Von Schmeling
128.		is an association between	D .	von Schineling
140.	A.	Fungus and roots of higher plan	nte.	
			ns	
	В.	Fungus and algae		

	C.	Bacteria and Fungus		
	D.	None of the above		
129.	Mode	of entry of the fungus Ustilago	tritici	
	A.	Roots Hair	В.	Stigma
	C.	Epidermis	D.	Stigma and young ovary walls
130.	Small	•	from the	e parent mycelium to grow into new
	thallu	s, the small fragment are called		
	A.	Oidia or Arthrospores	В.	Conidiospores
	C.	Sporangiophore	D.	Sporangia
131.	Spitze	enkorper is found in		
	Â.	Oomycetes	В.	Zygomycetes
	C.	Phycomycetes	D.	Septed Fungi
132.	The r	ust genera which lacks the uredir	nial state	
	A.	Demicyclic	B.	Microcyclic
	C.	Nuclear Cycle	D.	Macrocyclic
133.	What	is the causal agents of orange or b	rown ru	ast of wheat, which is quite common
	on wh	neat in India		
	A.	Puccinia recondita	В.	Puccinia striiformis
	C.	Puccinia graminis	D.	Puccinia glumarum
134.	Which	n one the following is not true ab	out <i>Gyi</i>	mnosporangium juniper-
	virgi	nianae		
	A.	Primary host is juniper, alternat	te host i	s apple
	B.	Uredospores are not produced		
	C.	Teliospores germinate without	resting	period
	D.	None		
135.	Which	n one of the following is most dea	ıdly mu	shroom
	A.	Amanita muscaria	В.	Agaricus bisporus
	C.	Pleurotus spp.	D.	Lentinula edodes
136.	Who is	s known as the father of Tropical	plant P	
	A.	NA Cobb	В.	Anton de Bary
	C.	HM Ward	D.	E M Fries
137.	The fi	irst book on plant pathology was	written	by
	A.	Anton de Bary	В.	RS Singh
	C.	E J Butler	D.	JG Kuhn
138.	Any c		ganism '	which is toxic to the plant is called?
	A.	Phytotoxin	В.	Vivotoxin
	C.	Pathotoxin	D.	Tabtoxin
139.	Which	h of the following is used by fung	i to abso	orb nutrients from cells
	of pla	nts hosts?		
	A.	Appressorium	В.	Haustorium
	C.	Rhizomorph	D.	Infection peg
		Guide book of plant I	Patholog	y ♦ 56

140. The time gap between infection and the first reproduction of the path			roduction of the pathogen in the					
	host is ca							
	A. I	Local infection	В.	Systemic infection				
	C. (Colonization	D.	Fructification				
141.	Single ce	elled, thick walled resting spore	s are call	ed?				
	Α. (Conidia	B.	Spore				
	C. (Chlamydospore	D.	Sclerotia				
142.	Heteroth	allism was discovered by-						
	A. A	A.F. Blackslee	B.	P.A. Micheli				
	C.	Anton De Bary	D.	Persoon				
143.	Dutch elm disease are transmitted by-							
	A. S	colytid beetles	B.	Stainer bug				
	C. N	Vematode	D.	Elm Bark beetle				
144.	Ergot by	Claviceps produces						
		Alkaloids that are used as medic						
	C. I	Hallucinogenic drug LSD						
		All of the above						
145.	Biosynth	etic pathway that is present in	Oomyce	tes is?				
	-	Glucose	В.	Fructose				
	C. I	Lysine	D.	Glycogen				
146.		ols that are present in Oomycet	es is?	, .				
		Ergosterol	B.	Fucosterol				
		Oligosterol	D.	None of the above				
147.		Which of the following are known as water molds?						
		Leptomitales	B.	Saprolegniales				
	C. I	Rhipidales	D.	None of the above				
148.		ora graminicola (green ear of	Bajra) ii	n India was reported by?				
		Mundukar BB	В.	Butler EJ				
	C. V	Ward HM	D.	None of the above				
149.	Pataulin-	secondary metabolite is production	ced by w	which type of organism?				
		Penicillium chrysogenum	В.	Penicillium ochraceus				
		Penicillium expansum	D.	None of the above				
150.		sporin - secondary metabolite is	produce	ed by which type of organism?				
	•	Acremoium chrysogenum	B.	Penicillium ochraceus				
		Penicillium expansum	D.	None of the above				
151.		id - secondary metabolite is pro	duced by	which type of organism?				
	-	Acremoiumchrysogenum	<i>B</i> .	Penicillium ochraceus				
		Aspergillus flavus	D.	None of the above				
152.		al genetic recombination in D.	discoide	rum was discovered by?				
		Pontecorvo and Roper	B.	Sinha and Ashworth				
		Guide book of plant Po	athology :	♦ 57				

	C.	Ainsworth and Bisby	D.	None of the above
153.	Ovular	riopsis is an anamorph of?		
	A.	Leveilulla	В.	Phyllactinia
	C.	Podosphora	D.	None of the above
154.	_	sis is an anamorph of?		
	A.	Leveilulla	В.	Phyllactinia
	C.	Podosphora	D.	None of the above
155.	Oidiun	n is an anamorph of?		
	A.	Leveilulla	В.	Phyllactinia
	C.	Podosphora	D.	None of the above
156.		is known as cand		fungus?
	A.	X. hypoxylon	B.	X. polymorpha
	C.	X. digitata	D.	None of the above
157.	Most o	f the fungi have a filamentous ve		body called as
	A.	Hyphae	B.	Mycelium
	C.	Flagella	D.	Plasmodium
158.	Some of	of the spores can swim by means	of flage	ella known as
	A.	Oospores	B.	Zoospores
	C.	Meiospores	D.	Zygospore
159.	Examp	les of hemibiotrophs are		
	A.	Venturia inequalis	B.	Powdery mildew
	C.	Downy mildew	D.	All of the above
160.		is known as dead	l mans f	inger fungus?
	A.	X. hypoxylon	B.	X. polymorpha
	C.	X. digitata	D.	None of the above
161.	Who d	iscovered heterothallism in muco	rs?	
	A.	Pontecorvo and Roper	B.	AF Blackslee
	C.	De Bary	D.	None of the above
162.	The bo	ok Systema mycologicum was w	ritten by	<i>i</i> ?
	A.	Linnaeus	B.	EM Fries
	C.	Tulsane LR	D.	None of the above
163.	Linnea	us of mycology is called by who	n?	
	A.	Linnaeus	B.	EM Fries
	C.	Tulsane LR	D.	None of the above
164.	Fungi i	imperfecti the group was created	by?	
	A.	Linnaeus	B.	EM Fries
	C.	Fuckel	D.	None of the above

CHAPTER 4 FUNDAMENTALS OF MYCOLOGY

- 1. (Ans: A, *Amanita phalloides;* Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 8)
- 2. (Ans: B, Antonio Micheli; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 8)
- 3. (Ans: C, 1845, Ireland; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 8)
- 4. (Ans: A, Alexander Fleming, 1928; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 9)
- 5. (Ans: C, *Saccharomyces cerevisiae*; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 9)
- 6. (Ans: C, Both A and B; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 11)
- 7. (Ans: C, Heterotrophic and absorptive; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 10)
- 8. (Ans: C, Chitin and Cellulose; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 10)
- 9. (Ans: B, Dolipore septum; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 14)
- 10. (Ans: B, Coenocytic condition; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 14)
- 11. (Ans: B, Polymer of N-acetyl glucosamine units; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 15)
- 12. (Ans: B, Dikaryon; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 16)
- 13. (Ans: B, Fusion between 2 sexual cells; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 20)
- 14. (Ans: A, 2 nuclei; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 20)
- 15. (Ans: C, Gametangiogamy; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 21)
- 16. (Ans: A, Zygospore; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 21)
- 17. (Ans: B, Oospore; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 21)

- 18. (Ans: B, Dung; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 23)
- 19. (Ans: B, Debary; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 25)
- 20. (Ans: A, Louis Pasteur; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 26)
- 21. (Ans: D, All of the above; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 27)
- 22. (Ans: B, A.F. Blakeslee; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 32)
- 23. (Ans: A, Rhizopus; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 34)
- 24. (Ans: B, Trichogyne; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 42)
- 25. (Ans: A, Crook cell; Source: A textbook of fungi, bacteria and virus by H.C Dube pg.no 43)
- 26. (Ans: B, Thallus; Source: Fundamentals of Phytopathology by D. Alice, C. Jeyalakshmi, A.S. Krishnamoorthy and M. Karthikeyan, Page: 61)
- 27. (Ans: A, 80s Source: Fundamentals of Phytopathology by D. Alice, C. Jeyalakshmi, A.S. Krishnamoorthy and M. Karthikeyan, Page: 63)
- 28. (Ans: C, *Amorphotheca resina*e; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 619)
- 29. (Ans: D, Aflatoxicoses; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 623)
- 30. (Ans: B, Cardiac Beri-beri Man; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 623)
- 31. (Ans: C, *Aspergillus flavus*; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 623)
- 32. (Ans: B, *Epicoccum granulatum*; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 617)
- 33. (Ans: B, *Aspergillus nidulans*; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 580)
- 34. (Ans: D, *Cochliobolus victoriae*; Source: An Introduction to Mycology by Aneja and Mehrotra, Page: 282)
- 35. (Ans: A, Dirty; Source: Modern Plant Pathology by H.C Dube, Page: 491)
- 36. (Ans: C, Both A and B; Source: Modern Plant Pathology by H.C Dube, Page: 492)
- 37. (Ans: D, All of the above; Source: Modern Plant Pathology by H.C Dube, Page: 492)
- 38. (Ans: A, Entorrhizales; Source: Modern Plant Pathology by H.C Dube, Page: 493)

- 39. (Ans: C, Epibasidium; Source: Modern Plant Pathology by H.C Dube, Page: 496)
- 40. (Ans: B, Dikaryotization; Source: Fundamentals of Phytopathology by D. Alice, C. Jeyalakshmi, A.S. Krishnamoorthy and M. Karthikeyan, Page: 79)
- 41. (Ans: C, Globose; Source: Fundamentals of Phytopathology by D. Alice, C. Jeyalakshmi, A.S. Krishnamoorthy and M. Karthikeyan, Page: 83)
- 42. (Ans: A, *Magnaporthe grisea*; Source: Modern Plant Pathology by H.C Dube, Page: 298)
- 43. (Ans: B, Blast disease; Source: Modern Plant Pathology by H.C Dube, Page:298)
- 44. (Ans: B, *Uromyces fabae*; Source: Modern Plant Pathology by H.C Dube, Page:537)
- 45. (Ans: D, *Gymnosporangium juniperi-virginianae*; Source: Modern Plant Pathology by H.C Dube, Page: 537)
- 46. (Ans: A, Tinsel type flagella (Fungi, Bacteria and viruses by H. C Dube; page 20)
- 47. (Ans: B, Carbendazim (Fungicide and their application, IASRI, e-course)
- 48. (Ans: A, Teliospores (Fungi, Bacteria and viruses by H. C Dube; page 71)
- 49. (Ans: B, Sterigmata (Fungi, Bacteria and viruses by H. C Dube; page 70)
- 50. (Ans: C, Uredospore (Fungi, Bacteria and viruses by H. C Dube; page 79)
- 51. (Ans: B, Colletotrichum (Fungi, Bacteria and viruses by H. C Dube; page 111)
- 52. (Ans: D, *Alternaria* (Fungi, Bacteria and viruses by H. C Dube; page 109)
- 53. (Ans: A, *Rhizopus* (Fungi, Bacteria and viruses by H. C Dube; page 35)
- 54. (Ans: C, Diploid (Fungi, Bacteria and viruses by H. C Dube; page 17)
- 55. (Ans: B, Cleistothecium (Fungi, Bacteria and viruses by H. C Dube; page 46)
- 56. (Ans: C, *Pilobolus* (Fungi, Bacteria and viruses by H. C Dube; page 36)
- 57. (Ans: B, *Amanita phalloides* (Fungi, Bacteria and viruses by H. C Dube; page 8)
- 58. (Ans: A, Agaricus bisporus
- 59. (Ans: B, 4 (Fungi, Bacteria and viruses by H. C Dube; page 81)
- 60. (Ans: C, 8 (Fungi, Bacteria and viruses by H. C Dube; page 45)
- 61. (Ans: D, Ascomycota (An Introduction to Mycology by Aneeja&Mehrotra; Page 158)
- 62. (Ans: A, *Puccinia recondita* (Fungi, Bacteria and viruses by H. C Dube; page 77)
- 63. (Ans: B, Barbery (Fungi, Bacteria and viruses by H. C Dube; page 81)
- 64. (Ans: C, Single celled (Fungi, Bacteria and viruses by H. C Dube; page 81)
- 65. (Ans: D, Paraphyses (Fungi, Bacteria and viruses by H. C Dube; page 77)
- 66. Ans: C, Karyochoresis; source- A text book of fungi, bacteria and viruses ,pg;15)
- 67. Ans: B, Mitotic crossing over; source- A text book of fungi, bacteria and viruses ,pg;17)
- 68. Ans: B, Terrestrial fungi; source-A text book of fungi, bacteria and viruses, pg;19)
- 69. Ans: A, 9+2 structure; source- A text book of fungi, bacteria and viruses, pg;19)
- 70. Ans: B, Hypobasidium; source-A text book of fungi, bacteria and viruses, pg;74)
- 71. Ans: B, Basidiomycota; source-A text book of fungi, bacteria and viruses, pg;72)
- 72. Ans: A, Oval with four equatorial germ spore; source-A text book of fungi, bacteria and viruses ,pg;83)

- 73. Ans: B, Stakman and Levine; source- A text book of fungi, bacteria and viruses ,pg;85)
- 74. Ans: A, Internally seed borne; source- A text book of fungi, bacteria and viruses ,pg;89)
- 75. Ans: A, Conidia; source- A text book of fungi, bacteria and viruses ,pg;108)
- 76. Ans: D, Saprolegniales; source-A text book of fungi, bacteria and viruses ,pg;119)
- 77. Ans: C, Obligate; source- Plant pathology by G N agrios, pg; 405)
- 78. Ans: A, Lysergic acid diethylamide; source-Plant pathology by G N agrios ,pg;37)
- 79. Ans: B, Aflatoxin; source-Plant pathology by G N agrios ,pg;41)
- 80. Ans: A, Synnema; source- A text book of fungi, bacteria and viruses, pg; 42)
- 81. Ans: B, Trichogyne; source- A text book of fungi, bacteria and viruses ,pg;42)
- 82. Ans: D, Aspergillus; source- A text book of fungi, bacteria and viruses ,pg;56)
- 83. Ans: B, *Penicillium griseofulvum*; source- A text book of fungi, bacteria and viruses, pg;59)
- 84. (Ans: B, Haploid cycle; Source: Book: HC Dube, An Introduction to Fungi, page: 39)
- 85. (Ans: A, Blastocladiales and *S. cerevisiae*; Source: Book: HC Dube, An Introduction to Fungi, page: 41)
- 86. (Ans: A, *Aspergillus* and *Penicillium*; Source: Book: HC Dube, An Introduction to Fungi, page: 41)
- 87. (Ans: D, All of the above; Source: Book: A textbook of fungi, bacteria and viruses, page: 70)
- 88. (Ans: B, Ascomycota; Source: Book: A textbook of fungi, bacteria and viruses, page: 52)
- 89. (Ans: B, Basidiospore; Source: Book: HC Dube, A textbook of fungi, bacteria and viruses, page: 73)
- 90. (Ans: D, Hilar appendix; Source: Book: H.C. Dube, An Introduction to fungi, page: 280)
- 91. (Ans: C, *Pilobolus*; Source: Book: HC Dube, A textbook of fungi, bacteria and viruses, page: 36)
- 92. (Ans: B, *Pilobolus*; Source: Book: HC Dube, A textbook of fungi, bacteria and viruses, page: 36)
- 93. (Ans: B, *Saprolegnia*; Source: Book: HC Dube, A textbook of fungi, bacteria and viruses, page: 36)
- 94. (Ans: D, i, ii, iii, iv are correct; Source: Book: HC Dube, An Introduction to Fungi, page: 406)
- 95. (Ans: B, Basidiomycota; Source: Book: HC Dube, A textbook of fungi, bacteria and viruses, page: 142)
- 96. (Ans: B, Pycnidia; Source: Book: HC Dube, An Introduction to Fungi, page: 271)

- 97. (Ans: A, Agaricomycetes, Dacrymycetes, Tremellomycetes; Source: Book: HC Dube, An Introduction to Fungi, page: 293)
- 98. (Ans: A, Pezizomycotina; Source: Book: HC Dube, An Introduction to Fungi, p age: 177)
- 99. (Ans: B, *Taphrina pruni*; Source: Book: HC Dube, An Introduction to Fungi, page: 161)
- 100. (Ans: C, i, ii, iii are correct; Source: Book: HC Dube, An Introduction to Fungi, page: 57)
- 101. (Ans: C, Both Mucorales and Ascomycota; Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, page: 141)
- 102. (Ans: C, Peronosporales; Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, page: 133)
- 103. (Ans: A, *Uromyces*; Source: Book: HC Dube, An Introduction to fungi, Page: 381)
- 104. (Ans: D, E.J.Butler; Source: principles of plant pathology-R.S. Singh, Page no: 28)
- 105. (Ans: A, Pontecorvo; Source: Fungi bacteria & viruses-H.C. Dube, Page no: 9)
- 106. (Ans: A, Oomycetes; Source: G.N Agrios, Page no: 391)
- 107. (Ans: C, Zoospores; Source: G.N Agrios, Page no: 390)
- 108. (Ans: C, Basidiomycetes; Source: Fungi bacteria and virus- H.C. Dube, Page no: 70)
- 109. (Ans: C, Haploid; Source: Fungi bacteria and virus- H.C. Dube, Page no: 71)
- 110. (Ans: B, A. nidulans; Source: Fungi bacteria and virus- H.C. Dube, Page no: 143)
- 111. (Ans: C, Both A and B; Source: Fungi bacteria and virus- H.C. Dube, Page no: 29)
- 112. (Ans: B, Secondary mycelium; Source: principles of plant pathology-R.S. Singh, Page no: 37)
- 113. (Ans: A, Pycnia + Aecia; Source: G.N Agrios, Page no: 570)
- 114. (Ans: A, Ascomycota; Source: Fungi bacteria and virus- H.C. Dube, Page no: 55)
- 115. (Ans: C, Aspergillus; Source: Fungi bacteria and virus- H.C. Dube, Page no: 55)
- 116. (Ans: A, *Uncinula*; Source: Fungi bacteria and virus- H.C. Dube, Page no: 54)
- 117. (Ans: B, 8; Source: Fungi bacteria and virus- H.C. Dube, Page no: 45)
- 118. (Ans: B, *Magnaporthe grisea*; Source: Plant Pathology, Satvinder Kaur Mann, Prem Lal Kashyap, Santosh Singh Kang, Page: 6)
- 119. Ans: A, Stomata; Source: A text book on Fungal, Bacteria and viruses-H.C Dube, Page no: 77
- 120. Ans: C, Paraphysis; Source: A text book on Fungal, Bacteria and viruses- H.C Dube, Page no: 47
- 121. Ans: C, Oospore; Source: A text book on Fungal, Bacteria and viruses-H.C Dube, Page no: 126
- 122. Ans: D, All the above; Source: principles of plant pathology-R.S. Singh, Page no: 303
- 123. Ans: A, *Amanita muscarina*; An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 378)

- 124. Ans: C, H.M. Ward; Source: Plant Pathology, Satvinder Kaur Mann, Prem Lal Kashyap, Santosh Singh
- 125. Ans: A, *Magnaporthe grisea;* Source: Plant Pathology, Satvinder Kaur Mann, Prem Lal Kashyap, Santosh Singh Kang, Page: 6)
- 126. (Ans: B, Matheiu Du Tillet; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 3)
- 127. (Ans: C, Vanderplank; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 11)
- 128. (Ans: B, Fungus and Algae; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 31)
- 129. (Ans: D, Stigma and young ovary walls; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 46)
- 130. (Ans: A, Oidia and Arthrospores; Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 71)
- 131. (Ans: D, Septed fungi; Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 18)
- 132. (Ans: A, Demicyclic; Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 310)
- 133. (Ans: A, *Puccinia recondita*; Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 318)
- 134. (Ans: D, None; Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 323)
- 135. (Ans: A, *Amanita muscarina*; Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 378)
- 136. (Ans: C, HM. Ward; Source: Plant Pathology, Satvinder Kaur Mann, Prem Lal Kashyap, Santosh Singh Kang, Page: 3)
- 137. (Ans: D, Kuhn; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 7)
- 138. (Ans: A, Phytotoxin; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 39)
- 139. (Ans: B, Haustorium; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 45)
- 140. (Ans: D, Fruitification; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 49)
- 141. (Ans: C, Chlamydospores; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 73)
- 142. (Ans: A, A.F.Blakeslee; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 119)
- 143. (Ans: D, Elm Bark Beetle; Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:55)

- 144. (Ans: D, All of the above; Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 2)
- 145. (Ans: C, Lysine; Source: Introduction to Fungi HC Dube pg.no-406)
- 146. (Ans: B, Fucosterol; Source: Introduction to Fungi HC Dube pg.no- 406)
- 147. (Ans: B, Saprolegniales; Source: Introduction to Fungi HC Dube pg.no-409)
- 148. (Ans: B, Butler E.J; Source: Introduction toFungi HC Dube pg.no- 423)
- 149. (Ans: C, *Penicillum expansum*; Source: Introduction toFungi HC Dube pg.no-512)
- 150. (Ans: A, *Acremonium chrysogenum*; Source: Introduction toFungi HC Dube pg.no- 512)
- 151. (Ans: C, Aspergillus flavus; Source: Introduction toFungi HC Dube pg.no-512)
- 152. (Ans: B, Sinha and Ainsworth; Source: Introduction to Fungi HC Dube pg.no-441)
- 153. (Ans: B, *Phyllactinia*; Source: Introduction toFungi HC Dube pg.no- 219)
- 154. (Ans: A, *Leveilulla*; Source: Introduction to Fungi HC Dube pg.no- 219)
- 155. (Ans: C, *Podospora*; Source: Introduction to Fungi HC Dube pg.no- 219)
- 156. (Ans: A, X. hypoxylon; Source: Introduction to Fungi HC Dube pg.no- 239)
- 157. (Ans: B, Mycelium; Source: G.N Agrios, pg.no-388)
- 158. (Ans: B, Zoospores; Source: G.N Agrios, pg.no- 388)
- 159. (Ans: A, Venturia inaequalis; Source: G.N Agrios, pg.no- 388)
- 160. (Ans: B, *X. polymorpha*; Source: Introduction toFungi HC Dube pg.no- 239)
- 161. (Ans: B, A.F.Blakeslee; Source: Introduction to Fungi HC Dube pg.no- 10)
- 162. (Ans: B, E.M.Fries; Source: Introduction to Fungi HC Dube pg.no- 13)
- 163. (Ans: B, E.M.Fries; Source: Introduction to Fungi HC Dube pg.no- 13)
- 164. (Ans: C, Fuckel; Source: Introduction to Fungi HC Dube pg.no-406)

CHAPTER 5 BASIC BACTERIOLOGY

1.	Whi	Which of the following is the first bacterial disease?						
	A.	Moko wilt of banana	B.	Black rot of cabbage				
	C.	Fire blight of apple	D.	None of the above.				
2.	Num	nber of chromosomes present in bacte	eria is:					
	A.	1	В.	>1				
	C.	<1	D.	2				
3.	Wha	What is the shape of <i>Micrococcus</i> ?						
	A.	Spherical	В.	Oval				
	C.	Coccoid	D.	All of the above				
4.	In w	hich year did the 2nd edition of The	Systematics v	vas published?				
	A.	1996	В.	2000				
	C.	2004	D.	1990				
5.	Who	is known as the Father of Modern B	acteriology?					
	A.	Antony Van Leeuwenhoek	В.	Louis Pasteur				
	C.	Hook	D.	None of the above				
6.	In which year Antony Van Leeuwenhoek invented the simple microscope?							
	A.	1820	B.	1667				
	C.	1910	D.	1676				
7.	The spherical bacterium is known as:							
	A.	Bacillus	B.	Coccus				
	C.	Spirillum	D.	Vibrio				
8.	The	cell wall is surrounded, in some bacte	eria, by a poly	ysaccharide in the form of				
	a definite layer called:							
	A.	Capsule	B.	Flagella				
	C.	Pili	D.	None of the above				
9.	Diau	ixic growth in bacteria occurs when b	acterium is p	rovided with two				
subst	trates		_					
	A.	Glucose	В.	Sucrose				
	C.	Both (A) and (B)	D.	None of the above				
10.	The	elicitor of Ralstoniasolanacearum is	S					
	A.	Harpin	В.	PopA1				
	C.	HarpinS	D.	Both (A) and (C)				

11.	The el	licitor of Erwiniaamylovora is			
	A.	Harpin	В.	PopA1	
	C.	HarpinS	D.	Both (A) and (C)	
12.	The el	licitor of Pseudomonas syringae is			
	A.	Harpin	B.	PopA1	
	C.	HarpinS	D.	Both (A) and (C)	
13.	Avr ge	ene of Xanthomonascampestrispv. pl	haseoli is:		
	A.	AvrXp1	B.	avrB5	
	<i>C</i> .	Both (A) and (B)	D.	None of the above	
14.	Photo	lithotrophs are genereally			
	A.	Auxotrophic	В.	Heterotrophic	
	C.	Chemotrophic	D.	Organotrophic	
<i>15</i> .	Ralsto	onia belongs to the family			
	A.	Burkholderiacea	B.	Comamonadaceae	
	<i>C</i> .	Xanthomonadaceae	D.	Pseudomonadaceae	
16.	The fi	erst edition of Bergeys's Manual of	Determinat	tive Bacteriology was	
publish		Ç.			
•	A.	1923	B.	1901	
	C.	1885	D.	1675	
17.	Spirochaetes causes diseases in humans are:				
	A.	Jaundice	B.	Syphilis	
	C.	Malaria	D.	Both (A) and (B)	
18.	Penicillin was discovered by				
	A.	Antony Van Leeuwenhoek	B.	Louis Pasteur	
	C.	Robert Koch	D.	Alexander Fleming	
19. 1923?	Who	was the originator of Bergeys's Man	ual of Dete	rminative Bacteriology in	
	A.	David, H. Bergey	В.	Hooke	
	C.	Robert Koch	D.	Louis Pasteur	
20.	The G	fummosis of sugarcane is caused by			
	A.	Xanthomonasaxonopodispv. vasc	culorum		
	B.	Xanthomonascitri			
	<i>C</i> .	Ralstoniasolanacearum			
	D.	Bacillus spp.			
21. WI	hich of t	he following is highest percentage in	cytoplasmi	c membrane of bacteria?	
	A) Lipi	d	B) Ca	arbohydrates	
	C) Prot		D) Sterols		
22. Th	ickness	of bilayers of phospholipid in cytopla			
	A) 1-21		B) 2-4		

D) 4 nm
,
B) 20-25%
D) 35%
B)ssRNA
D) dsDNA
teria?
B) 2
D) 4
uring replication?
B) Mesosomes
D) fimbriae
B) Clostridium
D) None of the above
B) Amphitrichous
D) Peritrichous
B) Xanthomonaceae
D) Staphylococcaceae
B) P ring
D) M ring
which kind of flagella?
B) Amphitrichous
D) Peritrichous
B) Haloanaerobiales
D) None of the above
h lenticels?
bies
D) Erwinia spp.
irce of energy?
B) Heterotroph
D) Lithotrophs
?
B) col-plasmid
D) Cryptic-plasmid
y ♦ 68

36.	Secretion s	system for which direct contact of bac	cterium 1	to host cell?
	A) Type I S	Secretion system	B) Typ	e II Secretion system
	C) Type III	Secretion System	D) Typ	e IV Secretion system
37.	Invirion as	sembly which structural unit is assem	bled firs	t?
	A) Head		B) Tail	
	C) Collar		D) Bas	se Plate
38.	The outern	nost covering of endospore is called?	ĺ	
	A) Spore co		B) Out	er membrane
	C) Exospor	ium		e of the above
39.		e acid and Ca+ ion which attribute hea	,	
	present in?			1
	A) Spore co		B) Out	er membrane
	C) Exospor		D) Spo	
40.		rein subunits is present maximum in c		
	A) NAM	1	B) NA	_
	c) NAM &	NAG	,	e of the above
41.	/	he following bacterial diseases enters		
		anthomonascampestrispvoryzicola	1	8 1
		winiaamylovora		
		reptomyces scabies		
		anthomonasoryzaepvoryzae		
42.		he following bacterial diseases enters	the plan	nts through necterthodes
		unthomonascampestrispvoryzicola	1	8
		winiaamylovora		
		reptomyces scabies		
		unthomonasoryzaepvoryzae		
43.		he following bacterial diseases enters	the plar	nts through stomata
		unthomonascampestrispvoryzicola	1	\mathcal{S}
		winiaamylovora		
		reptomyces scabies		
		unthomonasoryzaepvoryzae		
44.		rilt of cucurbits caused by Erwiniatrac	heiphila	enters into cucurbits
throug	gh wounds cr		1	
,	-	· · · · · · · · · · · · · · · · · · ·	В.	C. denticulate
	C. Di	abroticavittata	D.	None of the above
<i>45</i> .	Erwiniaan	<i>nylovora</i> is transmitted by		
	A. Le	af miner	B.	Bees and wasps
	C. Flo	ee beetle	D.	Fruit fly
46.	Xanthomo	nascitri is transmitted by		
	A. Leaf r	niner	B.	Bees and wasps
	C. Flee b	eetle	D.	Fruit fly
		Guide book of plant Pathology	\$ 69	÷

47.	Whic	ch of the following bacterial disease is s	eed transn	nitted
	A.	X. campestrispvmalvacearum	B.	X. citri
	C.	Erwiniaamylovora	D.	X. oryzaepvoryzae
48.	Exan	nple of transient visitors		
	A.	X. campestrispvcampestris	B.	Pantoea
	C.	Erwinia	D.	Bacillus
49.	Bacte	erial ooze comes out of stomata in the n	norning ho	urs and lesions remain
		cted in rows by veins is a symptom of		
	A.	Leaf speck	В.	Wilt
	C.	Leaf streak	D.	Gummosis
50.	Olde	r leaves near ground levels show V-sha	ped water	soaked lesions appear
		margin to inward later turn yellow and	_	
		ymptom of		·
	A.	Scab	В.	Black rot or black veir
	C.	Canker	D.	Blotch
51.	Oran	ge red discolouration of the vascular bu	ndle conta	ining water conducting
	tissue	es (xylem) at the basal nodes of the stal	lk is a sym	ptom of
	A.	Ratoon stunting of sugarcane	В.	Gummosis of cherris
	C.	Bacterial fruit blotch	D.	Bacterial canker
52.	Whic	ch of the following diseases survives in s	soil	
	A.	Ralstonia	В.	X
	camp	estrispvmalvacearum		
	C.	X campestrispvcampestris	D.	Pantoeastewartii
53.	Paras	sitic activity of Trichodermaviride was f	irst report	ed by Weindling in 1932
	again	ast	-	
	A.	Ralstoniasolanacearum	B.	Rhizoctoniasolani
	C.	Xanthomonasoryzaepvoryzae	D.	Botrytis cineraria
54.	Plasn	nid of which of the following produces l	bacteriocir	nAgrocin 84
	A.	A. radiobacter	В.	A. tumefaciens
	C.	B. subtilis	D.	Pseudomonas
55.	Flood	ding of fields is to control		
	A. I	Fusarium wilt	B.	Leaf spot
	C. S	Scab	D.	Blotch
56.	Bacte	erial blight of pea is transmitted by		
	A.	Aerosols	B.	Sprinkler irrigation
	C.	Aerial strands	D.	Both b & c
57.	Bacte	erial blight of mulberry caused by P.syr	ringaepvm	ori is transmitted by
	A.	Aerosols	B.	Sprinkler irrigation
	C.	Aerial strands	D.	Both b & c

58.	Pla	nt pathogenic bacterial genera Erwin	nia was establisl	ned by				
	A.	Migula,1894	B.	Dowson, 1939				
	C.	Davis et al., 1984	D.	Winslow et al., 1917				
59.	Pla	nt pathogenic bacterial genera Pseu	domonas was e	stablished by				
	A.	Migula,1894	В.	Dowson, 1939				
	C.	Davis et al., 1984	D.	Winslow et al., 1917				
60.	Pla	nt pathogenic bacterial genera Xant	homonas was es	stablished by				
	A.	Migula,1894	В.	Dowson, 1939				
	C.	Davis et al., 1984	D.	Winslow et al., 1917				
61.	Pla	nt pathogenic bacterial genera Clav	<i>ibacter</i> was esta					
	A.	Migula,1894	В.	Dowson, 1939				
	C.	Davis et al., 1984	D.	Winslow et al., 1917				
62.	Bac	cterial blight of cotton was first report	rted in					
	A.	India	B.	USA				
	C.	Hawaii	D.	Brazil				
63.	Bac	Bacterial blight of cotton was first reported in India in the state of						
	A.	Karnataka	В.	Tamil Nadu				
	C.	Kerala	D.	Andhra Pradesh				
64.	Citrus canker first originated in which country							
	A.	India	В.	USA				
	C.	Hawaii	D.	Brazil				
65.	Bac	eterial blight of rice is caused by						
	A.	X. oryzaepvoryzae	B.	X. oryzaepvoryzicola				
	<i>C</i> .	X. campestrispvcampestris	D.	X. citri				
66.	Cor	n flee beetle transmits						
	A.	Xanthomonascitri	B.	Erwiniaamylovora				
	<i>C</i> .	Pantoeastewartii	D.	Clavibactertritici				
67.	Bac	cterial blight of soybean is transmitte	ed by					
	A.	Rainsplashes	B.	Aerosol				
	<i>C</i> .	Irrigation	D.	Nematode				
68.	Bct	erialetiology of a plant disease was	first reported by	,				
	A.	Robert koch	В.	Woronin				
	C.	T.J.Burril	D.	E.F Smith				
69.	Fir	st bacterial plant pathogen, which w	as sequenced by	y A.J. Simpson was				
	A.	Xy lella fastidios a						
	В.	Haemophilus influenza						
	<i>C</i> .	Ralstoniasolanacearum						
	D.	Xanthomonasaxonopodispv. citri						
70.	The	e technique of gram staining was dev	veloped in the ye	ear				
	A.	1885	В.	1884				
	C.	1887	D	1889				
		Guide book of plant P	athology ♦ 71					

71.	Phytopathogenic bacteria are		
	A. Mostly gram negative	В.	Noncapsulated
	C. Non- spore former	D.	All of the above
72.	The cytoplasmic membrane of bacteria contains		
	A. 50% protein,25% lipids, 25% carbohy	drates	
	B. 75 % protein, 50% lipids, 25% carbo	hydrates	
	C. 25% protein, 50% lipids, 25% carboh	ydrates	
	D. None of the above		
73.	The cell wall of bacteria consists of		
	A. Cellulose	В.	Chitin
	C. Murein	D.	â- glucan
74.	The site of respiration in bacteria is		
	A. Mesosomes	В.	Ribosomes
	C. Plasmid	D.	All of the above
75.	Bacterium with several flagella at one polae end is called		
	A. Monotrichous	В.	Amphitrichous
	C. Cephalotrichous	D.	Lophotrichous
76.	Flagellin is an incomplete protein containing		
	A. 14 amino acids	В.	15 amino acids
	C. 16 amino acids	D.	17 amino acids
77.	The flagellar antigen is called		
	A. Fantigen	В.	H antigen
	C. Bantigen	D.	L antigen
78.	1		
	A. Molecular oxygen as stimuli	В.	Water as stimuli
	C. Light	D.	None of the above
<i>79</i> .	Xanthomonasoryzaepv. oryzae enters the h	ost throu	gh
	A. Hydathodes	В.	Trichomes
	C. Root hairs	D.	Lenticels
80.	Corn flee beetle is a carrier of		
	A. Pseudomonas syringaepv. glycinea	B.	Erwiniaamylovora
	C. Pantoeastewartii	D.	Pseudomonas avenae
81.	Ralstoniasolanacearum survives in		
	A. Soil	В.	Seed
	C. Weeds	D.	Insect vector
82.	Bacteria which uses inorganic compounds as source of energy is called		
	A. Phototrophs	В.	Lithotrophs
	C. Chemoautotrophs	D.	Photoorganotroph
83.	Bacteria which flourish at moderate temperat	ture	
	A. Psychrophiles	В.	Mesophiles
	C. Thermophiles	D.	None of the above
	Guide book of plant Patholo	$gy \diamondsuit 72$	2

84.	Organi	sms that do not require O2 for growth ar	nd are in	hibited are called
0	A.	Obligate aerobes	В.	Facultative aerobecs
	C.	Obligate anaerobes	D.	Facultative anaerobes
85.		em plasmid was coined by	ъ.	i deditati ve dilacioses
03.	A.	Lederberg	В.	H.Stolp
	C.	E.F. Smith	D.	None of the above
86.		vibrio parasitizes	D .	None of the above
80.	A.	Viono parastuzes Virus	B.	Fungi
	C.	Bacteria	D.	Phytoplasma
87.		nes containing plasmid is called	D .	i nytopiasina
07.	A.	Fertility plasmid	B.	Col-plasmid
	C.	* *	Б. D.	Virulence plasmid
88.		Cryptic plasmid		virulence piasiniu
00.		ynthetic bacteria contain chlorophyll in –		they late id as a mala man a
	A. C.	Cytoplasm	В. D.	thylakoid membrane
90		Both a and b		None of the above
89.		ebacteria contains — in their c		D 1
	A.	Polysaccharide	В.	Pseudopeptidoglycan
0.0	C.	Protein	D.	All the above
90.		a bacteria	ъ	0.5.2.0 3/2.0.5.0
	A.	0.2-1.5μmX3.0-5.0μm	В.	0.5-2.0μmX3.0-5.0μm
0.1	C.	0.1-1μmX1-2μm	D.	0.5-1.0μmΧ1.0-2.0 μm
91.		ead of phospholipids present in cytoplas	smic mer	nbrane of bacteria are
point		s——side of surface	_	_
	A.	Outer	В.	Inner
	C.	Middle	D.	None of the above
92.	Site of	oxidative phosphorylation in prokaryotes	s is –	
	a.	Cytoplasmic membrane	c.	mitochondria
	b.	Golgi bodies	d.	ribozyme
93.	Bacter	ial DNA is — type		
	a.	Closed		
	b.	circularc.covalentd.all the above		
94.	Filame	nt in bactertial flagella constitutes of –		
	a.	Nonproteinaceous core	c.	proteinaceoussubfibrils
	b.	Flagellind.all the above		
95.	Tumbl	ing is seen in case of — flag	ellation	
	a.lophot	richous	c.	monotrichous
	b. peritr	ichous	d.	none of the above
96.	Mode o	of action of penicillin-		
	a.	Murein breakage	c.	Binding to 50S ribozyme
	b.	Affects 30S ribozyme	d.	Inhibits RNA
		·		polymerase enzyme
		Guide book of plant Pathology	<i>γ</i> ♦ 73	- · ·

97.	Tetra	cyclines inhibits binding of –					
	a.	Aminoacyltransferase to 30S ribozy	me				
	b.	Inhibits binding of RNA Polymerase	to cell				
	c.	Aminoacyltransferase to 50S ribozy	me				
	d.	None of the above					
98.	The n	number of ring present in gram positive	bacterial	flagella is/are-			
	a)	1 ring	b)	2 rings			
	c)	3 rings	d)	4 rings			
99.	The	size of Bacteria ranges generally from-		_			
	a)	2.5-4.2 micrometer in diameter to 3.	0-5.0 mic	rometer in length.			
	b)	0.2-1.5 micrometer in diameter to 5.	5-7.2 mic	rometer in length.			
	c)	2.5-4.2 micrometer in diameter to 5.	5-7.2 mic	rometer in length.			
	d)	0.2-1.5 micrometer in diameter to 3.	0-5.0 mic	rometer in length.			
100.	In Gr	am negative bacteria, total number of r	ing prese	nt is –			
	a)	One	b)	Two			
	c)	Three	d)	Four			
101.	Gram	negative bacterial cell wall is lacking i	n –				
	a)	Techoic acid	b)	Butaric acid			
	c)	Muramic acid	d)	Lipid protein			
102.	Gram	negative Bacteria are under division –	•				
	a)	Tenericutes	b)	Firmicutes			
	c)	Mollicutes	d)	Gracilicutes			
103.	The c	ell wall of some bacteria is surrounded	by a poly	saccharide in the form of a			
	thick	definite layer, this is known as –					
	a)	Capsule	b)	Capsid			
	c)	Slime Layer	d)	Cell layer			
104.	In ele	In electron microphotograph, the cell wall of gram negative bacteria appears as -					
	a)	Homogenous layer	b)	Bi layered			
	c)	Tri partile	d)	Tetra layered			
105.	In gei	neral, gram positive bacteria contain m	ucopeptid	e of –			
	a)	3-12%	b)	20%			
	c)	35%	d)	85%			
106.	The bude	ding bacterial genus is –					
	a)	Caulobacter	b)	Vibrio			
	c)	Rhodomicrobium	d)	Sarcina			
107.	The pi	lli are present in most of the –					
	a)	Gram positive bacteria	b)	Gram negative bacteria			
	c)	Phytoplasmas	d)	RLO			
108.	The ba	acterial flagella are –					
	a)	40 Angstrom in diameter					
	b)	60 Angstrom in diameter Guide book of plant Pathology	ogy ♦ 7	4			

	c)	120-150 Angstrom in di		
	d)	90-110 Angstrom in dian		
109.	The heli	cal or spiral bacteria (Sp	oirochae	tes) move by contraction of –
	a)	Flagella	b)	Crista
	c)	Stalk	d)	Pilli
110.	Cysts are	e formed in the bacterial	genus -	•
	a)	Bacillus	b)	Clostridium
	c)	Azotobacter	d)	Sarcina
111.	Bacteria	with bunches of flagella	at both	end of the cell are called –
	a)	Peritrichous	b)	Amphitrichous
	c)	Lophotrichous	d)	Monotrichous
112.	Ring rot((wilt)of potato is caused	by –	
	a)	Burkholderiagladicola	b)	Pseudomonas syringaepv. syringae
	c)	Ralstoniasolanacearum	d)	Pecobacterium carotovora pv. carotovora
113.	Conjugat	ion in bacteria was disco	vered by	whom?
	a)	Lederburg and Tatum	b)	Hayes
	c)	Woolman	d)	Avery, Macleod and McCarty
114.	Causal c	organism of Pierce's dise	ase of g	rapevine?
	<i>a)</i>	Clavibacterxyli	<i>b)</i>	Xylellafastidiosa
	c)	Rathayibactertritici	d)	
		acteriumcarotovorapv.a		
115.	Plasmi	d which can be transferre	ed from	one bacterial cell to another by a
	conjuga	ative process are called a	ıs	
	a) F – f	actor	b) R –	factor
	c) Alteri	nate plasmid	d) Non	e of the above
116.	The tra	nsfer of a naked fragmen	nt of DN	IA between bacteria is called
	a) Conju	ıgation	b) Tran	sformation
	c) Trans	duction	d) none	e of the above
117.	Which	of the following bacterio		nas a lysogenic life cycle?
	a) Lamb	oda	b) T3	
	c) T7		d) Colip	
118.	The flagell	la having lateral filament	s perpen	dicular to the main axis are termed as
	a) Whip	lash flagella	b) tinse	l flagella
	c) Feath	ery flagella	d) Loco	omotary flagella
119.	MLO a	nd Spiroplasma are most	ly	
	a) Xylen	n inhibiting	b) Phloe	em inhibiting
	c) Both	(a) & (b)	d) Stom	ata inhibiting
120.	The bac	cterial cell wall is made t	•	
	a) Chitir		,	opeptide
	c) fatty	acid	d) Cellu	ılose

121.	N-Ace linked	•	murami	c acid in the peptidoglycan unit is
	a)	â 1, 4-glycosidic bond	b)	Interpeptide linkage
	c)	Phosphate bond	ď)	S-H bond
122.		vs manual of determinative bacter	,	
	a)	4 volumes	b)	11 sections
	c)	2 volumes	d)	3 volumes
123.		ne is a host specific toxin	,	
	a)	tabtoxin	b)	fusaric acid
	c)	Pyricularin	d)	victorin
124.	The vege	tative stages of most types of ba	cteria re	produce by
	a)	Fission	b)	Segmentation
	c)	Spore formation	d)	None of the above
125.	Bacter	iophage is actually a		
	a)	Virus	b)	Bacteria
	c)	Bdellovibrio	d)	None of the above
126.	Erwini	aamylovora bacteria causing fir	e blight	of Apple and Pear is also
	transm	itted by		
	a)	Ants	b)	Flies
	c)	Bees	d)	All of the above
127.	The numb	er of chromosomes present in ba	icteria is	:
	a)	1	b)	>1
	c)	<1	d)	2
128.7	The spheri	cal bacterium is known as		
	a)	Bacillus	b)	Coccus
	c)	Spirillum	d)	Vibrio
129.	The elicito	ors of Erwiniaamylovora is		
	a)	Harpin	b)	PopA1
	c)	Harpins	d)	Both A & C
130.	Wart dis	ease of patato caused by Synch	ytriumen	
	a)	Endemic	b)	Epidemic
	c)	Pandemic	c)	Sporadic
131.V	_	garded as father of plant bacterio		
	A.	M. K. Mitra	В.	E.J. Butler
	C.	K.C. Mehta	D.	B.B. Mundkur
132.		discovered bacteria?		
	A.	Antonie van Leeuwenhoek	В.	Louis Pasteur
	C.	E. F. Smith	D.	Robert Koch
133.		ar leaf spot or Black arm of cotto		
	A.	Xanthomonas	В.	Pseudomonas

	C. Erw	rinia	D. Cl	avibacter
134.		la are present on all sides of the		
	Α.	Peritrichous	B.	Monotrichus
	C.	Amphitrichus	D.	Lophotrichus
135.	Which	one of the following genera cau	ises mos	*
Veget	tables?	2.2		
Č	A.	Agrobacterium	B.	Ralstonia
	C.	Xanthomonas	D.	None of the above
136.	The B	acterium causing citrus canker e	nters the	e plants through
	A.	Stomata	B.	Hydathode
	C.	Lenticel	D.	Natural opening or Wounds
137.	Which	one of the following cannot be o	ultured	in vitro?
	A.	Plant Pathogenic Bacteria	В.	Spiroplasma
	C.	Fungi	D.	Phytoplasma
138.	F plasi	mid is transmitted from one bacte	erial cell	
	A.	Transformation	B.	Conjugation
	C.	Transduction	D.	All of the above
139.	Pili pro	esent in bacteria help in		
	A.	Transformation	B.	Conjugation
	C.	Transduction	D.	All of the above
140.	In whi		ire Blig	ht" was described by T. J Burrill
	A.	1888	В.	1885
	C.	1882	D.	1878
141.	The en	ndospores forming bacterial genu	ıs is	
	A.	Pseudomonas	В.	Bacillus
	C.	Erwinia	D.	Rhizobium
142.		ze of the flagellin molecule is-		_
		10 Å in diameter	В.	30 Å in diameter
	C.	40 Å in diameter	D.	80 Å in diameter
143.	The s	stalked bacterial genus is-		
	A.	Bacillus	В.	
	C.	Spirillum	D.	Caulobacter
144.	Mucope	ptide is a polymer made up of al	ternating	
	A.	NAG and NAM	В.	Manose and Galactose
	C.	Glucose and Galactose	D.	Mucopeptide
145.		iont bacterial genus is-		
	A.	Rhizobium	В.	Pseudomonas
	С.	Erwinia	D.	Bacillus
146. (ly capsule and slime layer are m		
	A.	Proteins molecules	В.	Fat

	C.	Polysaccharide of Glucose	D.	Essential amino acids
147.	In gener	ral gram positive bacteria contain mucop	eptide of	<u>-</u>
	A.	3-12%	В.	20%
	C.	35%	D.	85%
148.	In gener	ral gram negative bacteria contain muco	peptide o	f-
	A.	3-12%	B.	20%
	C.	35%	D.	85%
149.	Bacteria	ıl flagella are lacking of-		
	A.	Protein	B.	Mucopeptide
	C.	9+ 2 Structure	D.	Filament
150.	The ce	ell wall of bacteria contains		
	A.	Peptidoglycan	В.	Chitin
	C.	Cellulose	D.	All of these
151.	Pseud	omurein is present in-		
	A.	Bacteria	В.	Archaeabacteria
	C.	Fungi	D.	Algae
152.	Histor	ne proteins are present in-		
	A.	Bacteria	В.	Archaea
	C.	Eukaryote	D.	None
153.	Who i	s regarded as the father of bacteriologic	al technic	ques?
	A.	Robert Koch	В.	E F Smith
	C.	T J Burril	D.	M S Woronin
154.	Who is	s the founder of phytobacterilogy in Indi	a?	
	A.	M K Patel	В.	M K Hingorani
	C.	E J Butler	D.	E F Smith
155.	What	is the shape of the bacteria Hyphomicr	obium ?	
	A.	Bifidoform	В.	Star shaped
	C.	Bat shaped	D.	Fusiform
156.	Plant 1	pathogenic bacteria are mostly-		
	A.	Gram negative in reaction	В.	Non capsulated
	C.	Non-spore former	D.	All of these
157.	Which	of the following protein is present in fla	gella?	
	A.	Pilin	В.	Flagellin
	C.	Prolin	D.	None
158.	In case	e of Gram positive bacteria, the cytoplas	smic men	brane contains-
	A.	Lipoteichoic acid	В.	Glycolipid
	C.	Phosphatidyl glycolipid	D.	All of these
159.	Murei	n, unique to bacterial cell wall is compos	sed of-	
	A.	N-acetyle glucosamine	В.	N-acetyl muramic acid
	C.	Both a) and b)	D.	None

160.	Xanthomonas is a type of bacteria-				
	A. Monotrichous	В.	Amphitrichous		
	C. Lophotrichous	D.	Peritrichous		
161.	Select the bacteria that have peritricho	us type o	f flagella		
	A. Erwinia	В.	Xanthomonas		
	C. Spirillum	D.	Agrobacterium		
162.	Select the rings present in the basal bo	dy of gra	m negative bacteria		
	A. L and P	В.	S and M		
	C. L, P, S and M	D.	None		
163.	The mode of entry of <i>Xanthomonasa</i>	<i>oryzae</i> pv.	oryzae into the host cell -		
	A. Stomata	В.	Lenticels		
	C. Hydathodes	D.	201111111111111111111111111111111111111		
164.		wartii is–			
	A. Corn flee beetle	В.	Crop debris		
	C. Seed	D.	Soil		
165.	Which of the following instrument is u	ised to me			
	A. Anemometer	В.	Barometer		
	C. Haemocytometer	D.	Calorimeter		
166.	1 &	_	_		
	A. Lag phase	В.	<i>O</i> 1		
	C. Stationary phase	D.	Death phase		
	Penicillinase plasmid imparts resistance	e to penic	eillin, present in which of the		
follov	ving bacteria?				
	A. Agrobacterium tumefaciens	В.	2		
	- · · · · · · · · · · · · · · · · · · ·	D.			
168.					
	A. Rhodomicrobium		Methylococcus		
	C. Methylobacter	D.	All of these		

CHAPTER 5 BASIC BACTERIOLOGY

- 1. (Ans: C, Fire blight of Apple Source: Modern Plant Pathology by H.C. Dube, Page: 46)
- 2. (Ans: A, 1 Source: Plant Bacteriology by K.K. Mondal, Page: 2)
- 3. (Ans: D, All of the above Source: Plant Bacteriology by K.K. Mondal, Page: 31)
- 4. (Ans: B, 2000 Source: Modern Plant Pathology by H.C Dube, Page: 48)
- 5. (Ans: B, Louis Pasteur Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 8
- 6. (Ans: D, 1676 Source: A text book of Fungi, Bacteria and Viruses by H.C. Dube, Page: 162)
- 7. (Ans: B, Coccus Source: A text book of Fungi, Bacteria and Viruses by H.C. Dube, Page: 163)
- 8. (Ans: A, Capsule Source: A text book of Fungi, Bacteria and Viruses by H.C. Dube, Page: 167)
- 9. (Ans: C, Both a and b Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 90)
- 10. (Ans: B, PoP A1 Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 104)
- 11. (Ans: A, Harpin Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 104)
- 12. (Ans: C, harpins Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 104)
- 13. (Ans: C, both a and b Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 106)
- 14. (Ans: A, auxotrophic Source: Fundamentals of Plant Bacteriology by Jayashree Jayaraman and Jeevan Prakash Verma, Page: 45)
- 15. (Ans: A: burkholderiaceae Source: Modern Plant Pathology by H.C Dube, Page: 49)
- 16. (Ans: A, 1923 Source: Modern Plant Pathology by H.C Dube, Page: 47)
- 17. (Ans: D, both a and b Source: A text book of Fungi, Bacteria and Viruses by H.C. Dube, Page: 166)
- 18. (Ans: D, Alexander fleming Source: A text book of Fungi, Bacteria and Viruses by H.C. Dube, Page: 175)
- 19. (Ans: A, david H Bergey Source: A text book of Fungi, Bacteria and Viruses by H.C. Dube, Page: 187)

- 20. (Ans: A, X axonopodis pv malvacearum Source: Plant Bacteriology by K.K. Mondal, Page: 78)
- 21. Ans C, Protein (Plant Bacteriology by K K Mondal; Page 44)
- 22. Ans B, 2-4nm (Plant Bacteriology by K K Mondal; Page 45)
- 23. Ans B, 20-25% (Plant Bacteriology by K KMondal; Page 46)
- 24. Ans B, ssRNA (Plant Bacteriology by K KMondal; Page 88)
- 25. Ans B, 2 (Plant Bacteriology by K K Mondal; Page 46)
- 26. Ans B, Mesosomes (Plant Bacteriology by K K Mondal; Page 49)
- 27. Ans B, Clostridium (Plant Bacteriology by K K Mondal; Page 51)
- 28. Ans C, Sub polar (Plant Bacteriology by K K Mondal; Page 55)
- 29. Ans A, Enterobacterioceae (Plant Bacteriology by K K Mondal; Page 56)
- 30. Ans C, S Ring (Plant Bacteriology by K K Mondal; Page 56)
- 31. Ans D, Peritrichous flagella (Plant Bacteriology by K K Mondal; Page 56)
- 32. Ans C, Enterobacteriales (Plant Bacteriology by K K Mondal; Page 65)
- 33. Ans B, Streptomyces scabies (Plant Bacteriology by K K Mondal; Page 71)
- 34. Ans D, Lithotrophs (Plant Bacteriology by K K Mondal; Page 83)
- 35. Ans B, col-plasmid (Plant Bacteriology by K K Mondal; Page 88)
- 36. Ans C, Type III Secretion System (Plant Bacteriology by K K Mondal; Page 97)
- 37. Ans D, Base Plate (Plant Bacteriology by K K Mondal; Page 107)
- 38. Ans C, Exosporium (Plant Bacteriology by K K Mondal; Page 111)
- 39. Ans D, Sporecore (Plant Bacteriology by K KMondal; Page 112)
- 40. Ans A, NAM (Plant Bacteriology by K KMondal; Page 112)
- 41. Ans: D Xoo (Plant bacteriology by KK Mondal, Page: 71)
- 42. Ans: B Erwinia amylovora (Plant bacteriology by KK Mondal, Page: 71)
- 43. Ans : A X. Campestris pv. oryzicola (Plant bacteriology by KK Mondal, Page : 71)
- 44. Ans: C Diabrotica vittata (Plant bacteriology by KK Mondal, Page : 71)
- 45. Ans: B Bees and wasps (Plant bacteriology by KK Mondal, Page: 73)
- 46. Ans: A Leaf miner (Plant bacteriology by KK Mondal, Page: 73)
- 47. Ans: A Xcm (Plant bacteriology by KK Mondal, Page: 73)
- 48. Ans: A X campestris pv. campestris (Plant bacteriology by KK Mondal, Page : 72)
- 49. Ans: C Leaf Streak (Plant bacteriology by KK Mondal, Page :37)
- 50. Ans: B black rot/black vein (Plant bacteriology by KK Mondal, Page :38)
- 51. Ans: A ration stunting of sugarcane (Plant bacteriology by KK Mondal, Page :40)
- 52. Ans: A Ralstonia (Plant bacteriology by KK Mondal, Page :77)
- 53. Ans: B Rhizoctonia solani (Principles of plant pathology, Page: 330)
- 54. Ans: AA. radiobacter (Principles of plant pathology, Page: 332)
- 55. Ans: A Fusarium wilt (Modern plant pathology, pg 155)
- 56. Ans: D Both b and c (Plant bacteriology by KK Mondal, Page :78)
- 57. Ans: C Aerial strands (Plant bacteriology by KK Mondal, Page :78)

- 58. Ans: D Winslow, 1917 (The Bacteria by JP Verma, page: 207)
- 59. Ans: A Migula, 1894 (The Bacteria by JP Verma, page: 207)
- 60. Ans: B Dowson,1939 (The Bacteria by JP Verma, page: 207)
- 61. Ans: B Dowson 1939 (The Bacteria by JP Verma, page: 207)
- 62. Ans: B USA (The Bacteria by JP Verma, page: 220)
- 63. Ans: B Tamil Nadu (The Bacteria by JP Verma, page: 220)
- 64. Ans: A India (The Bacteria by JP Verma, page: 228)
- 65. Ans: A Xoo (Plant bacteriology by KK Mondal, Page :73)
- 66. Ans: C Pantoea stewartii (Plant bacteriology by KK Mondal, Page: 73)
- 67. Ans: B Aerosol (Plant bacteriology by KK Mondal, Page: 73)
- 68. Ans: C Burill (Source: Plant Bacteriology, pg: 5)
- 69. Ans: A Xylella fastidiosa (Source: Plant Bacteriology, pg: 13)
- 70. Ans: B 1884 (Source: Plant Bacteriology, pg: 16)
- 71. Ans: D All the above (Source: Plant Bacteriology, pg: 32)
- 72. Ans: A 50 p,25 l, 25 c (Source : Plant Bacteriology, pg : 45)
- 73. Ans: C Murein (Source: Plant Bacteriology, pg: 46)
- 74. Ans: A mesosomes (Source: Plant Bacteriology, pg: 48)
- 75. Ans: C Cephalotrichous (Source: Plant Bacteriology, pg: 56)
- 76. Ans: A 14 amino acid (Source: Plant Bacteriology, pg: 56)
- 77. Ans: B H antigen (Source: Plant Bacteriology, pg: 56)
- 78. Ans: A molecular O as stimuli (Source: Plant Bacteriology, pg: 58)
- 79. Ans: A Hydathodes (Source: Plant Bacteriology, pg: 71)
- 80. Ans: C Pantoea stewartii (Source: Plant Bacteriology, pg: 75)
- 81. Ans: A soil (Source: Plant Bacteriology, pg: 77)
- 82. Ans: B lithotrophs (Source: Plant Bacteriology, pg: 83)
- 83. Ans: B mesophiles (Source: Plant Bacteriology, pg: 83)
- 84. Ans: C obligate anaerobes (Source: Plant Bacteriology, pg: 83)
- 85. Ans: A Lederberg (Source : Plant Bacteriology, pg : 87)
- 86. Ans: C bacteria (Source : Plant Bacteriology, pg : 103)
- 87. Ans: A fertility (Source: Plant Bacteriology, pg: 88) Fertility
- 88. Ans: C both a and b (Plant Bacteriology -KK Mondal, Chp 1, Introduction, Pg. No. 1)
- 89. Ans D all the above (Plant Bacteriology -KK Mondal, Chp 1, Introduction, Pg. No. 1)
- 90. Ans-A 0.2-1.5μmX3.0-5.0μm (Plant Bacteriology -KK Mondal , Chp 1, Introduction, Pg. No. 3)
- 91. Ans A outer (Plant Bacteriology -KK Mondal, Chp 6, Structure of bacteria, Pg. No. 45)
- 92. Ans A cytoplasmic membrane (Plant Bacteriology -KK Mondal, Chp 6, Structure of bacteria, Pg. No. 45)

- 93. Ans D All of the above (Plant Bacteriology -KK Mondal, Chp 6, Structure of bacteria, Pg. No. 2)
- 94. Ans D All of the above (Plant Bacteriology -KK Mondal, Chp 7, Flagellar arrangement, structure and movement in bacteria, Pg. No. 56)
- 95. Ans B peritrichous (Plant Bacteriology -KK Mondal, Chp 7, Flagellar arrangement, structure and movement in bacteria, Pg. No. 57)
- 96. Ans A murein breakage (Plant Bacteriology -KK Mondal, Chp 11, Antibiotics and their mode of action, Pg. No. 84)
- 97. Ans A Aminoacetyl transferase to 30S ribozyme (Plant Bacteriology -KK Mondal, Chp 11, Antibiotics and their mode of action, Pg. No. 85)
- 98. (Ans: b, 2 Source: Book: Kalyan K. Mondal, Plant Bacteriology, Page: 46)
- 99. (Ans: d, 0.2-1.5,3-5 Source: Book: Kalyan K. Mondal, Plant Bacteriology, Page: 3)
- 100. (Ans: d, 4 Source: Book: Kalyan K. Mondal, Plant Bacteriology, Page: 46)
- 101. (Ans: a, techoic acid Source: Book: Kalyan K. Mondal, Plant Bacteriology, Page: 46)
- 102. (Ans: d, gracilicutes Source: Book: HC, Dube, A Textbook of Fungi, Bacteria and Viruses, Page: 186)
- 103. (Ans: a, capsule Source: Book: Kalyan .K.Mondal, Plant Bacteriology, Page : 48)
- 104. (Ans: c, 3-layered Source: Book: HC, Dube, A Textbook of Fungi, Bacteria and Viruses, Page: 174)
- 105. (Ans: d, 85 Source: Book: HC, Dube, A Textbook of Fungi, Bacteria and Viruses, Page: 174)
- 106. (Ans: c, Rhadomicrobium Source: Book: HC, Dube, A Textbook of Fungi, Bacteria and Viruses, Page: 165)
- 107. (Ans: b, G-ve bacteria Source: Book: H.C.Dube, A textbook of Fungi, Bacteria and Viruses, page :170)
- 108. (Ans: c, Dubey,1968 Source: Book: Kalyan.K.Mondal, Plant Bacteriology)
- 109. (Ans: b, crista Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, Page: 166)
- 110. (Ans: c, azotobacter Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, Page: 166)
- 111. (Ans: c, amphitrichous Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, Page: 169)
- 112. (Ans: c, R. solanacearum Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, Page: 217)
- 113. (Ans: a, lederburg and tatum Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, Page: 205)

- 114. (Ans: b, xylella fastidiosa Source: Book: HC Dube, A textbook of Fungi, Bacteria and Viruses, Page: 218)
- 115. (Ans: A, F Factor Source: Fungi bacteria and virus- H.C. Dube, Page no: 208)
- 116. (Ans: B, transformation Source: Fungi bacteria and virus- H.C. Dube, Page no: 201)
- 117. (Ans: A, lamda Source: Fungi bacteria and virus- H.C. Dube, Page no: 213)
- 118. (Ans: B, tinsel flagella Source: Fungi bacteria and virus- H.C. Dube, Page no: 170)
- 119. (Ans: B, phloem Source: principles of plant pathology-R.S. Singh, Page no: 25)
- 120. (Ans: B, mucopeptide Source: Fungi bacteria and virus- H.C. Dube, Page no: 167)
- 121. (Ans: A, B 1,4 Glucosidic linkage Source: Fungi bacteria and virus- H.C. Dube, Page no: 172)
- 122. (Ans: A, K.K. Mondal Source: Fungi bacteria and virus- H.C. Dube, Page no: 187)
- 123. (Ans: D, victorin Source: principles of plant pathology, Page no: 154)
- 124. (Ans: A, Fission Source: Fungi bacteria and virus- H.C. Dube, Page no: 196)
- 125. (Ans: A, virus Source: Fungi bacteria and virus- H.C. Dube, Page no: 229)
- 126. (Ans: d, bees Source: principles of plant pathology-R.S. Singh, Page no: 78)
- 127. (Ans: A, 1 Source: Plant Bacteriology by K.K Mondal, Page no: 2)
- 128. (Ans: B, coccus Source: A text book on Fungal, Bacteria and viruses- H.C Dube, Page no: 163)
- 129. (Ans: A, harpin Source: fundamentals of Plant bacteriology by Jayashree and Jayaraman and J.P. Verma, Page no: 104)
- 130. (Ans: A, edndemic Source: principles of plant pathology-R.S. Singh, Page no: 40)
- 131. (Ans: A, MK Mitra Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:13)
- 132. (Ans: A, A.V. Luewonhoek Source: Fundamentals of Plant Bacteriology, Jayashree Jayaraman and J.P Verma, Page: 3)
- 133. (Ans: A, Xanthomonas Source: Fundamentals of Plant Bacteriology, Jayashree Jayaraman and J.P Verma, Page: 18)
- 134. (Ans: A, Peritrichous Source: Fundamentals of Plant Bacteriology, Jayashree Jayaraman and J.P Verma, Page: 63)
- 135. (Ans: B, Ralstonia Source: Fundamentals of Plant Bacteriology, Jayashree Jayaraman and J.P Verma, Page: 59)
- 136. (Ans: D, Natural openings Source: Fundamentals of Plant Bacteriology, Jayashree Jayaraman and J.P Verma, Page: 32)
- 137. (Ans: D, phytoplasma Source: Fundamentals of Plant Bacteriology, Jayashree Jayaraman and J.P Verma, Page: 53)
- 138. (Ans: B, conjugation Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 208)
- 139. (Ans: B, conjugation Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 207)
- 140. (Ans: D, 1878 Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 217)
- 141. (Ans: B, Bacillus Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 182)
- 142. (Ans: C, 40A Source Fridge Dackerland Authorizes, H. 64Dube, Page: 168)
- 143. (Ans: D, Caulobacter Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 182)

- 144. (Ans: D, NAG and NAM Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 172)
- 145. (Ans: A, Rhizobium Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 162)
- 146. (Ans: C, polysaccharide Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 171)
- 147. (Ans: D, 85 Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 172)
- 148. (Ans: A, 3-12 Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 172)
- 149. (Ans: C, (9+2) Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 168)
- 150. (Ans: A, peptidoglycan Sources: K K Mondal, Plant Bacteriology, Page no: 45)
- 151. (Ans: B, archaebacteria Sources: K K Mondal, Plant Bacteriology, Page no: 2)
- 152. (Ans: B, archaebacteria Sources: K K Mondal, Plant Bacteriology, Page no: 2)
- 153. (Ans: A, Robert Koch Sources: K K Mondal, Plant Bacteriology, Page no: 5)
- 154. (Ans: A, MK Patel Sources: K K Mondal, Plant Bacteriology, Page no: 6)
- 155. (Ans: C, bat shaped Sources: K K Mondal, Plant Bacteriology, Page no: 32)
- 156. (Ans: D, all of these Sources: K K Mondal, Plant Bacteriology, Page no: 32)
- 157. (Ans: B, flagellin Sources: K K Mondal, Plant Bacteriology, Page no: 44)
- 158. (Ans: D, all of these Sources: K K Mondal, Plant Bacteriology, Page no: 45)
- 159. (Ans: C, both b and c Sources: K K Mondal, Plant Bacteriology, Page no: 46)
- 160. (Ans: A, monotrichous Sources: K K Mondal, Plant Bacteriology, Page no: 55)
- 161. (Ans: A, erwinia Sources: K K Mondal, Plant Bacteriology, Page no: 55)
- 162. (Ans: C, L,P,S and M Sources: K K Mondal, Plant Bacteriology, Page no: 57)
- 163. (Ans: D, Both a and c Sources: K K Mondal, Plant Bacteriology, Page no: 71)
- 164. (Ans: A, corn flea bettle Sources: K K Mondal, Plant Bacteriology, Page no: 77)
- 165. (Ans: C, haemocytometer Sources: K K Mondal, Plant Bacteriology, Page no: 79)
- 166. (Ans: C, stationary phase Sources: K K Mondal, Plant Bacteriology, Page no: 81)
- 167. (Ans: C, staphylococcus aureus Sources: K K Mondal, Plant Bacteriology, Page no: 88)
- 168. (Ans: D, all of these Source: K K Mondal, Plant Bacteriology, Page no: 110)

<u>CHAPTER 6</u> PLANT VIROLOGY

1.	Whic	h of the following does not belong	to Clo	steroviridae			
	A)	Closterovirus	B)	Bymovirus			
	C)	Ampelovirus	D)	Both (A) and (C)			
2.	Whic	h of the following is true about To	mato le	eaf curl virus?			
	A)	It is transmitted by whiteflies	B)	It is a single-stranded DNA virus			
	C)	It has a bipartite genome	D)	All of the above			
3.	Whic	Which of the following does not belong to Rhabdoviridae					
	A)	Cytorhabdo virus	B)	Nucleorhabdo virus			
	C)	Fiji virus	D)	Both (A) and (B)			
4.	Whic	h one of the following is true abou	ıt Cauli	flower mosaic virus?			
	A)	It is a double stranded DNA	B)	Its genome is a isometric particle			
	C)	Both (A) and (B)	D)	None of the above			
5.	Later	nt period is present in					
	A)	Non persistent	B)	Persistent			
	C)	Semi-persisatent	D)	Both (A) and (C)			
6.	Retention of virus through moulting is present in						
	A)	Non persistent	B)	Semi-persistent			
	C)	Persistent	D)	Both (a) and (b)			
7.	Whic	Which of the following is persistent virus?					
	A)	Potato leaf roll virus	B)	Citrus tristeza virus			
	C)	Soybean mosaic virus	D)	Both (a) and (b)			
8.	Who	Who is the Father of Virology?					
	A)	Adolf Mayer	B)	M.W Beijerinck			
	C)	T.O Deiner	D)	W.M Stanley			
9.	Elect	ron Microscope was invented by					
	A)	M.Knoll & E. Ruska	B)	Dmitri Ivanowaski			
	C)	Adolf Mayer	D)	B. Kassanis			
10.	Who	demonstrated that Tobacco Mosa	ic Virus	s is sap transmissible?			
	A)	M.W Beijerinck	B)	T.O Deiner			
	C)	W.M Stanley	D)	Adolf Mayer			
11.	Who	demonstrated that the causal ager	nt of tol	bacco mosaic could pass through			
		rial filter?		-			
	A)	T.O Deiner	B)	W.M Stanley			
	C)	Adolf Mayer	D)	Dimitri Ivanowski			

12.	Whor	proved that viruses can be crysta	alized?	
	A) .	T.O Deiner	B)	W.M Stanley
	C)	Adolf Mayer	Ď)	Dimitri Ivanowski
13.		ite virus was discovered by	,	
	A)	M.Knoll & E. Ruska	B)	Dmitri Ivanowaski
	C)	Adolf Mayer	Ď)	B. Kassanis
14.		can be inactivated by	,	
	A)	Heat	B)	Antibiotics
	C)	Insecticides	D)	All of the above
15.	The co	omplete virus particle is known	as	
	A)	Viroid	B)	Virusoid
	C)	Virion	Ď)	Nucleoprotein
16.	Virus	groups having a single molecul	ar spécie	-
	A)	Unipartite	B)	Monopartite
	C)	Nanopartite	D)	Unopartite
17.	Which	n of the following is/are ssDNA	virus?	_
	A)	Maize Streak virus	B)	Tomato leaf curl virus
	C)	Banana bunchy top virus	D)	All of the above
18.	Which	n of the following is/are dsRNA	virus?	
	A)	Wound tumor virus	B)	Rice dwarf virus
	C)	Rice ragged stunt virus	D)	All of the above
19.	Which	n of the following is/are dsDNA	virus?	
	A)	Cauliflower mosaic virus	B)	Dahlia mosaic virus
	C)	Rice tungro bacilliform virus	D)	All of the above
20.	Which	n of the following is/are ss(-)neg	gative ser	nse RNA virus
	A)	Potato yellow dwarf virus	B)	Tomato spotted wilt virus
	C)	Rice stripe virus	D)	All of the above
21.	How 1	nuch percentage does the nucle	ic acid n	nake up of the virus?
	A)	60-95%	B)	45-50%
	C)	5-40%	D)	1-2%
22.	Highe	r nucleic acid percentages are f	ound in v	which shape of virus?
	A)	Elongated viruses	B)	Spherical viruses
	C)	Cylindrical viruses	D)	Flexuous thread viruses
23.	Pinwh	eel like inclusion bodies is indu	ced by w	hich group of viruses?
	A)	Tobamovirus	B)	Closterovirus
	C)	Begomovirus	D)	Potyvirus
24.	•	rotein subunit of tobacco mosaic	virus (TN	MV) consists of amino
	acids.			
	A)	100	B)	250
	C)	150	D)	158

contain,	10					
A) DATA 1 DATA 40 110 D) 1 DATA DATA 110 .						
A) ssRNA, dsRNA, 40, 110 B) dsRNA, ssRNA, 110, 4						
C) ssRNA, dsRNA, 60, 200 D) ssRNA, dsRNA, 120, 3	50					
26. Which protein of TMV makes up the coat protein of the virus?						
A) 126K B) 183K						
C) 17.6K D) 30K						
27. Common types of plant symptoms caused by systemic virus infections a	re?					
A) Mosaics B) Ring spots						
C) Both a and b D) None of the above						
28. Which is the only means of tree to tree spread of virus in orchards?						
A) Dodder transmission B) Natural root grafts						
C) Budding D) Fungal transmission						
29. Stylet-borne viruses are said to be transmitted in	. manner?					
A) Non-persistent B) Semi-persistent						
C) Circulative D) Propagative						
30. Which nematode transmits nepoviruses?	Which nematode transmits nepoviruses?					
A) Longidorus B) Trichodorus						
C) Xiphinema D) Both a and c						
31. virus having 2 ssRNAs is transmitted by nem	natodes.					
A) Barley stripe mosaic virus B) Tobacco mosaic virus						
C) Tobacco rattle virus D) Potato mop top virus						
32. Cowpea mosaic virus is transmitted by?						
A) Aphids B) Nematodes						
C) Pollen D) Chrysomelid beetles						
33. Tospo virus is?						
A) Membranous circular particle B) Bacilliform particle						
C) Thin flexuous multipartite D) Isometric particle						
34. Maize streak virus is						
A) $(+)ssDNA$ B) $(-)ssDNA$						
C) dsDNA D) (+)ssRNA						
35 is applied as a spray or injected into the plant which	reduces					
viral disease symptoms directly and may even eliminate the virus in the						
A) Streptomycin B) Ribavirin	1					
C) Actinomycin D) Ampicillin						
36. The term means 'thread-like viruses'.						
A) Bunyavirus B) Macluravirus						
C) Closterovirus D) Crinivirus						

37.	Rice to	angro spherical virus belongs to	the grou	o of?
	A)	Corona virus	B) '	Bymovirus
	C)	Rymovirus	Ď)	Waikavirus
38.	,	nania disease of cucurbits is caus	,	hich group of viruses?
	A)	Furovirus	B)	Macluravirus
	C)	Hordeivirus	D)	Pecluvirus
39.		is an isometri	c virus l	naving 3+ssRNAs.
	A)	Bromovirus	B)	Cucumovirus
	C)	Alfamovirus	D)	All of the above
40.	Which	of the following diseases are car	used by v	viroids?
	A)	Citrus exocortis	B)	Potato spindle tuber
	C)	Cadang cadang	D)	All of the above
41.	Who c	oined the term 'virus'?		
	A)	Meyer	B)	B.Ivanovsky
	C)	Beijerinck	D)	Hashimoto
42.	Who d	liscovered that TMV contained I	RNA?	
	A)	Chester	B)	B.Bawden
	C)	C.Pirie	D)	Both b and c
43.	Who d	emonstrated that virus could be	eradicate	ed from an infected plant?
A)	Fukush	ni	B)	Kassanis
C)	Frankli	in	D)	Nixon
44.	Who d	emonstrated transvorial transmis	ssion of l	Rice dwarf virus?
	A)	Tsugita	B)	Hashimoto
	C)	Koken	D)	Fukushi
45.	Who d	iscovered the full structure of vir	rus?	
	A)	Mukker	B)	Rosalind Franklin
	C)	W.M. Stanley	D)	Robley Williams
46.	Who d	iscovered satellite RNA is plant	viruses?	
	A)	Davis	B)	Worley
	C)	Kaper <i>et al</i> .	D)	Goodman
47.	The fin	rst enzyme discovered in virus v	was	
	A)	Neuraminidase	B)	Endopeptidase
	C)	NTPase	D)	None of the above
48.	The sta	atement "Virus is a virus" is giv	en by,	
	A)	Bawden	B)	W.M.S tanley
	C)	Twort	D)	Andre Lwoff
49.	The in	fectious part of the virus is		
	A)	Envelope	B)	Nucleoid
	C)	Capsid	D)	Spike protein

50.	Total numbers of capsomeres present in the capsid of Adenovirus is					
	A)	251	B)	252		
	C)	253	D)	254		
51.	The t	erm Bacteriophage was coined	by			
	A)	d' Herelle	B)	Safferman		
	C)	Twort	D)	None of the above		
52.	Who	proved that the nucleic acid of	TMV is I	RNA		
	A)	Safferman and Morris	B)	Fraenkel- Conrat		
	C)	Gierer and Schramm	D)	None of the above		
53.	The v	weight of the nucleic acid range	es from			
	A)	2-5 x 106 Daltons	B)	1-3 x 106 Daltons		
	C)	7-9x 106 Daltons	D)	11-13 x 106 Daltons		
54.	Virus	ses which depend on helper viru	s are calle	d		
	A)	Sattellite virus	B)	TMV		
	C)	Potato X virus	D)	None of the above		
55.	In lea	of parenchyma cells the virus n	noves appr	ox.		
	A)	2 mm	B)	4 mm		
	C)	1 mm	D)	1.5 mm		
56.	Viruses which infect host without showing any symptoms is called					
	A)	Latent virus	B)	Local lesions		
	C)	Symptomless carrier	D)	None of the above		
57.	The	insect order ,which is the vecto	r of most o	of the viruses is		
	A)	Lepidoptera	B)	Homoptera		
	C)	Coleoptera	D)	Diptera		
58.	Grape	evine fan leaf virus is transmitte	d by	_		
	A)	Xiphinema index	B)	Longidorus		
	C)	Paralongidorus	D)	Trichodorus		
59.	Antib	oody producing hybrid cells are o	called			
	A)	Hybridomas	B)	Antiserum		
	C)	Polyclonal antibodies	D)	None of the above		
60.	ds Dì	NA containing virus is				
	A)	Cauliflower mosaic virus	B)	Potato yellow dwarf virus		
	C)	Rice ragged stunt virus	D)	TMV		
61.	Circu	ılative viruses which can multip	ly in their	respective vectors are called		
	A)	Semi persistent virus	B)	Propagative virus		
	C)	Non persistent virus	D)	None of the above		
62.	Pruni	us necrotic ring spot virus is tran	nsmitted by	y		
	A)	Plant sap	B)	Leaf hopper		
	C)	Pollen	D)	white fly		

63.	TMV	was caused not by microorganis	m, but b	y a 'contagious living fluid' that			
called		a virus was concluded by					
	A)	Holmes	B)	Adolph Mayer			
	C)	Beijerinck	D)	None of the above			
64.	Virus a	are described as-	ĺ				
	1)	"A virus is an infectious agent w	hich cou	ald be transmitted by grafting yet is			
		not to be retained by a bacteria- proof filter.					
	2)	•	_	ot transmissible cause disease in at			
		least one host.					
	3)	A sub-microscopic entity showing	ng absolu	ite obligate relationship with living			
		cells and ability to cause specif	ic diseas	e.			
	4)	A sub-microscopic obligate par-	asite con	sisting of nucleic acid and protein.			
	ŕ	A)Both 1 & 2	B) B	-			
		C) 3&4	D) 1&	2			
65.	Plant v	iruses have been classified into-					
	A)	19 families& 80 groups	B)	19 families & 81 groups			
	C)	18 families & 82 groups	D)	18 families & 81 groups			
66.	Viruses which borne on stylet of their vectors-						
	A)	Non -circulative non-persistent transmission					
	B)	Non- circulative semi-persistent transmission					
	C)	Persistent circulative non-propagative transmission					
	D)	Persistent circulative-propagati	ve transn	nission			
67.	An example of stylet- borne transmission in virus-vector-						
	A)	Potyvirus	B)	Beet yellows virus			
	C)	Tomato spotted wilt virus	D)	Citrus tristeza virus			
68.	Retention time of stylet-borne transmission-						
	A)	10-100 hours	B)	4-10 hours			
	C)	More than 100 hours	D)	12 hours			
69.	Retention time of semi-persistent transmission-						
	A)	10-100 hours	B)	4-10 hours			
	C)	More than 100 hours	D)	12 hours			
70.	Retention time of persistent type of transmission-						
	A)	10-100 hours	B)	4-10 hours			
	C)	More than 100 hours	D)	2 hours			
71.	Latent	period of persistent type of trans	mission				
	A)	4 hours	B)	10 hours			
	C)	8 hours	D)	12 hours or more			
72.	Examp	le of semi-persistent or stylet bo					
	A)	Bean yellow mosaic virus	B)	Citrus tristeza virus			
	C)	Cauliflower mosaic virus	D)	Potato leaf roll virus			

73.	Example of Persistent type of transmission							
	A)	Bean yellow mosaic virus	B)	Citrus tristeza virus				
	C)	Cauliflower mosaic virus	D)	Potato leaf roll virus				
74.	Exan	nple of aphid transmitted viruses	-					
	A)	Bean yellow mosaic virus	B)	Citrus tristeza virus				
	C)	Cauliflower mosaic virus	D)	All of the above				
75.	Rice	Rice dwarf virus is transmitted by-						
	A)	Nephotettix cinctiticeps	B)	B.Circulifer tenellus				
	C)	Aphis gossypii	D)	Myzus persicae				
76.	Large	est groups insect vector are-						
	A)	Aphids	B)	Leaf hopper				
	C)	White flies	D)	Mealy bugs				
77.	Exan	nple of polyphagous aphids-						
	A)	Aphis gossypii	B)	Myzus persicae				
	C)	Hyperomyzus latucae	D)	All of the above				
78.	Whit	eflies belong to which family-						
	A)	Coccoidae	B)	Cicadellidae				
	C)	Aleurodidae	D)	Delphacidae				
79.	Insect where all three types of virus-vector relationship (Stylet borne, circulative &							
	propagative is observed-							
	A)	Leaf hopper	B)	Whiteflies				
	C)	Mites	D)	Aphids				
80.	Typically polyphagous whitefly-							
	A)	Bemisia tabacci	B)	Trialeurodes vaporarium				
	C)	Trialeurodes abutiloneus	D)	None of the above				
81.	Of the whitefly transmitted virus species 90% belongs to genus-							
	A)	Crinivirus	B)	Ipomovirus				
	C)	Begomovirus	D)	Closterovirus				
82.	Most NEPO viruses are-							
	A)	Seed borne	B)	Vector transmitted				
	C)	Soil borne	D)	None of the above				
83.	It is t	he minimum total time a vector	needs to a	acquire a virus and inoculate it to a				
	virus	-free plant.		_				
	A)	Retention period	B)	Latent period				
	C)	Acquisition access period	D)	Transmission threshold period				
84.	Appe	earance of virus symptoms on a g	erminati	ng seedling is a full proof evidence				
			the seed					
	A)	Viroid	B)	Bacteria				
	C)	Virus	D)	Prions				

85.	Indic	ator plant of Cowpea mosaic viru	S-				
00.	A)	Vigna sinensis	В)	Phaseolus vulgaris			
	C)	Avena fatua	D)	Chenopodium amaranticolor			
86.		more classification was proposed	,	-			
	A)	1981	B)	1971			
	C)	1972	D)	1977			
87.		comes under which group of vir		1977			
	A)	Tobamoviruses	B)	Tobraviruses			
	C)	Pecluviruses	Ď)	Furoviruses			
88.		entire genome of TMV consist of		nucleotides			
	A)	6350	B)	5400			
	C)	6400	Ď)	6800			
89.	,	diagnostic hosts with N gene for	,				
	A)	Datura stramonium	B)	Nicotiana glutinosa			
	C)	Nicotiana tabacum	Ď)	All of the above			
90.	,	RNA hasORF (open reading	,	s)-			
	A)	1	B)	4			
	C)	7	D)	5			
91.	R gene for Potato virus X-						
	A)	Rx	B)	Ry			
	C)	Tm1	D)	Tm2			
92.	The s	ource plant of R gene Tm1 & T		MV is			
	A)	Brassica napus	B)	Nicotiana tabacum			
	C)	Lycopersicon esculentum	D)	Phaseolus vulgaris			
93.	Cross	s protection described by-	ŕ				
	A)	Mckinney	B)	Holmes			
	C)	W M Stanley	D)	I.A. Hoggan			
94.	Which tulip variety is susceptible to 'Tulipomania' caused by Tulip Breaking viru						
	A)	Flax leaved tulip	B)	Tulipa pink impression			
	C)	Semper augustus tulip	D)	Tulipa little beauty			
95.	Symp	otomless expression of disease ca	used by	virus and transmitted only			
	throu	through pollen and seed					
	A)	Cryptovirus	B)	Benyvirus			
	C)	Furovirus	D)	Umbravirus			
96.	Necro	otic island cells symptom on pota	to tuber	s caused by			
	A)	PVY	B)	PVX			
	C)	PVA	D)	Both A and B			
97.	Grou	ndnut rosette disease is caused by	y				
	A)	Umbravirus	B)	Luteovirus			
	C)	Umbravirus and cryptovirus	D)	Umbravirus and Luteovirus			

98.	The situation when a virus replicate initially on infected cell but cannot move to adjacent cell termed as						
	A)	Sublocal infection	B)	Subliminal infection			
	C)	Sublethel infection	D)	Lethal infection			
99.	/			caulimo virus helps in virus synthesis			
<i>))</i> .		ssembly	VIOIC	aumno virus neips in virus synthesis			
	A)	Electron lucent	B)	Pinwheel			
	C)	Electron dense	D)	Cylindrical			
100.		tomless infection	D)	Cymidicai			
100.	A)	Coconut cadang cadang viroid	B)	Apple scar skin viroid			
	C)	Hop stunt viroid	D)	Hop latent hop latent viroid			
101.	,	s exocortis viroid concentration is h		Trop fatent nop fatent virold			
101.	A)	Nucleus	B)	Nucleoli			
	C)	Nucleoplasm	D)	Chloroplast			
102.	/	many structural domain present in	/	•			
102.		6	B)	5			
	A) C)	3	Б) D)	7			
103.	/	_	,				
105.	_	satellite RNAs (B type) associate					
	A)	Nepovirus Luteovirus	B)	Tobamovirus			
104.	C)		D)	Carmovirus			
104.		An enzyme helps viral gene to bind with retinoblastoma proteins which directs the					
		to S phase for their replication	D)	Davida Taranganintan			
	A)	RNA replicase	B)	Reverse Transcriptase			
105	C)	DNA polymerase	D)	DNA replicase			
105.	Type of virus encoded proteinases produced by Caulimoviridae						
	A)	Cysteine	B)	Aspartate			
106	C)	Serine and cysteine	D)	Cysteine and aspartate			
106.	Triple gene block observed in which virus group helps virus movement in plant cell						
	A)	Potexvirus	B)	Poty virus			
107	C)	Hordeivirus	D) .	Both A and C			
107.		e of point mutation for RNA virus	es estin	nated approximately per			
		otide per round of replication	>	10.11			
	A)	10-3 to 10-4	B)	10-11			
100	C)	10-12 to 10-13	D)	10-2			
108.		w leaf curl of tomato caused by		-			
	A)	Tomato yellow leaf curl virus (
	B)	Tomato yellow leaf curl sardiar					
	C)	Tomato yellow leaf curl sudan	virus (T	TYLCSDV)			
	D)	Δ11 the above					

109. Tomato yellow leaf curl Malaga virus is a recombination betwee			mbination between	
	A)	TYLCV & TYLCSDV	B)	TYLCV & TYLCSV
	C)	TYLCSV & TYLCSDV	D)	TYLCV & GRV
110.	Rhabo	lovirus envelope contains P	roteins	
A)	2 type	s of glycoproteins	B)	Matrix and coat proteins
	C)	Matrix and glycoproteins	D)	Coat protein and movement protein
111.	Find t	he wrong match		1
	A)	Phytoreovirus – 12 particles	B)	Rice dwarf virus – 7 particles
	C)	Rice ragged stunt virus – 6 par		•
	D)	Rice tungro virus – 5 particles		
112.	,	onal introns found in		
	A)	Rice tungro spherical virus	B)	Rice tungro bacilliform virus
	C)	Rice dwarf virus	D)	Rice ragged stunt virus
113.	,	st 80-90% of virus uncoating duri		
	A)	Cell wall	B)	Cytoplasm
	C)	Epidermis	D)	Nucleus
114.	Who o	discovered dsDNA CaMV?	ŕ	
	A) G	oodman <i>et al</i> . (1977)	B)	Shepherd et al. (1968)
	C) Sł	nepherd <i>et al.</i> (1958)	D)	None of the above
115.	Who d	discovered ssDNA virus-Gemini	virus?	
	A)	Goodman et al. (1977)	B)	Shepherd <i>et al.</i> (1968)
	C)	Shepherd et al. (1958)	D)	None of the above
116.	Amon	gst the following which virus has	split ger	nome?
	A)	BMV	B)	TRV
	C)	TSWV	D)	All the above
117.	Which	n of the following virus belongs to	o family	Bromoviridae?
	A)	Ilarvirus	B)	Alfamovirus
	C)	Cucumovirus	D)	All of the above
118.	Which	n of the following virus belongs t	o family	Closteroviridae?
	A)	Closterovirus	B)	Ampelovirus
	C)	Both A and B	D)	None
119.	Which	n of the following virus belongs to	o family	Comoviridae?
	A)	Comovirus	B)	Fabavirus
	C)	Nepovirus	D)	All the above
120.	Which	n of the following virus belongs to	o family	Flexiviridae?
	A)	Potexvirus	B)	Carlavirus
	C)	Both A and B	D)	None of the above
121.	Which	n of the following virus belongs to	o family	Luteoviridae?
	A)	Luteovirus	B)	Polerovirus
	C)	Both A and B	D)	None of the above
		Guide book of plant I	Pathology	<i>y</i> ♦ 95

122.	Which	n of the following virus belongs	to family	Potyviridae?		
	A)	Potyvirus	B)	Ipomovirus		
	C)	Bymovirus	D)	All the above		
123.	Which	n of the following family is the l	argest sin	gle group of plant virus?		
	A)	Potyviridae	B)	Luteoviridae		
	C)	Flexiviridae	D)	Bromoviridae		
124.	Rice T	<i>Tungro spherical virus</i> belongs	to which	family?		
	A)	Sesquiviridae	B)	Tombusviridae		
	C)	Flexiviridae	D)	Bromoviridae		
125.	TNV	belongs to which family?				
	A)	Tombusviridae	B)	Sesquiviridae		
	C)	Flexiviridae	D)	Bromoviridae		
126.	Which	n of the following family belong	s to single	stranded, negative sense, enveloped		
	RNA virus?					
	A)	Rhabdoviridae	B)	Bunyaviridae		
	C)	Both A and B	D)	None of the above		
127.	Which of the following family belongs to double stranded RNA virus?					
	A)	Reoviridae	B)	Partitiviridae		
	C)	Both A and B	D)	None of the above		
128.	Which of the following family belongs to single stranded DNA virus?					
	A)	Geminiviridae	B)	Nanoviridae		
	C)	Both A and B	D)	None of the above		
129.	Who first observed the Tobacco necrosis satellite virus (TNSV)?					
	A)	Holmes (1927)	B)	Bawden and Pirie (1928)		
	C)	Bawden and Pirie (1938)	D)	None		
130.	Viroid	ls were discovered by				
	A)	Bawden and Pirie (1938)	B)	T.O Diener (1971)		
	C)	T.O Diener (1961)	D)	Gross et al. (1978)		
131.	What is the molecular weight of viroids?					
	A)	100,00- 140,000 Daltons)	B)	100,00-120,000 Daltons		
	C)	100,00- 160,000 Daltons	D)	100,00-150,000 Daltons		
132.	Which of the following families belongs to viroids?					
	A)	Pospiviroidae	B)	Avsunviroidae		
	C)	Both A and B	D)	None		
133.	,	n of the following host enzyme	,	or viroid replication?		
	A)	RNA polymerase II	B)	RNAse		
	C)	RNA ligase	D)	All the above		
134.	,	s were discovered by	,			
	A)	Bawden and Pirie (1938)	B)	T.O Diener (1971)		
	Ć)	Prusiner (1982)	Ď)	None		

135.	Victo	Victorin or HV toxin is produced by which organism?					
	A)	Cochliobolus victoriae	B)	C. carbonum			
	C)	C. heterosporus	D)	None			
136.	Tento	oxin is produced by which organ	ism?				
	A)	Alternaria alternate	B)	Cochliobolus victoriae			
	C)	C. carbonum	D)	C. heterosporus			
137.	Inclu	sion bodies are produced by	•	-			
	A)	Virus	B)	Protozoa			
	C)	Bacteria	D)	Fungi			
138.	Size	of tobacco necrosis satellite viru	ıs is				
	A)	15 nm	B)	16 nm			
	C)	17 nm	Ď)	18 nm			
139.	Size	of wound tumor virus is	,				
	A)	55nm	B)	60nm			
	C)	65nm	D)	70nm			
140.	,	genome of tobacco rattle virus is	,				
	A)	2	B)	3			
	C)	4	D)	5 parts			
141.	,	ent of protein in virus	,	- 1			
	A)	50 %	B)	69 %			
	C)	60 to 95%	D)	80 %			
142.	,	Satellite RNAs areto the RNA of the virus					
	A)	Not related	B)	Partially related			
	C)	Related	D)	Option A and B			
143.	,	The infectivity of viruses is strictly the property of					
	A)	Protein	B)	The nucleic acid			
	C)	Both	D)	None			
144.				roximatelyhours of inoculation			
	A)	8	B) 11	9			
	C)	10	D)	11			
145.		oviruses codes forproteins	- /				
	A)	4	B)	5			
	C)	6	D)	7			
146.	,	berry Ring spot virus is transmi	,	•			
1 101	A)	Longidorus	B)	Xiphenema			
	C)	Both	D)	None			
147.		movirus is transmitted by aphid	,				
/ .	A)	Persistant	B)	Semi persistant			
	C)	Non persistant	D)	None			
	\sim	1 ton persistant	ט,	1 10110			

148.	Ilarvirus	s codes for proteins					
		3	B)	4			
	/	5	D)	6			
149.	,	idespread virus disease of stone	,	es is			
		Prunus Necrotic Ring Spot	B)	Cacao swollen shoot virus			
		Both	D)	None			
150.	,	Wound tumor virus falls in					
	A)	Bromoviridae	B)	Rhabhdoviridae			
	C)	Reoviridae	D)	None			
151.	,	spotted wilt virus infects	,				
		Monocots	B)	Dicots			
		Both	D)	None			
152.		spotted wilt virus is transmitted					
		Nematode	B)	Thrips			
		Fungi	D)	None			
153.		Which of the tenuivirus is not passed transovarially to 30 to 100% of the vector					
	progeny?						
		Rice hoja blanca virus	B)	Rice grassy stunt virus			
		Rice stripe virus	D)	Maize stripe virus			
154.	Banana streak virus is transmitted by						
		Aphid	B)	Whitefly			
	,	Mealy bugs	D)	Mechanically			
155.	Tomato pseudo-curly top virus is transmitted by						
		Aphid	B)	Whitefly			
		Treehopper	D)	Leafhopper			
156.	Coconut foliar decay virus is transmitted by						
		Myndus taffini	B)	Treehopper			
		Aphid	D)	Whitefly			
157.	Banana bunchy top virus is transmitted by						
	A)	Myndus traffini	B)	Pentalonia nigrinervosa			
		Both	D)	None			
158.	Tomato mottle virus is a geminivirus						
	A)	Monopartite	B)	Bipartite			
	C)	Multipartite	D)	None			
159.	Which o	of the following virus belong to C	ircovirio	lae			
		Banana bunchy top virus	B)	Coconut foliar decay virus			
	C)	Faba bean yellow necrotic viru	D)	All			
160.		cassava mosaic virus is transmi					
	A)	Aphids	B)	Whitefly			
	C)	Treehopper	D)	Planthopper			

161.	Circulifera tenellus is a vector for		
	A) African cassava mosaic virus	B)	Beet curly top virus
	C) Cucumber mosaic virus	D)	Mungbean yellow mosaic virus
162.	Which of the virus is transmitted by sap		· ·
	A) Potato virus X	B)	Tobacco mosaic virus
	C) Cucumber mosaic virus	D)	All
163.	Days taken for a systemic infection to	develop	is
	A) 5-6	B) .	7-8
	C) 9-13	D)	10-14
164.	Cauliflower mosaic virus is a		
	A) dsRNA	B)	ssRNA
	C) dsDNA	D)	ssDNA
165.	Lettuce big vein virus is transmitted by		
	A) Aphid	B)	Fungus
	C) Nematode	D)	Mechanically
166.	Rice ragged stunt virus is a		
	A) dsRNA	B)	dsDNA
	C) ssRNA	D)	ssDNA
167.	Local lesions appear within		
	A) 2 days	B)	3-7days
	C) 4-5days	D)	5-6 days
168.	Stylet borne transmission is also known		
	A) Persistant	B)	Semi persistant
	C) Non persistant	D)	None
169.	Peach mosaic virus is transmitted by		
	A) Aphids	B)	Mites
	C) Leafhopper	D)	Planthoppers
170.	TMV contains		
	A) 95 % protein and 5 % RNA	B)	*
151	C) 5 % protein and 95 % RNA	D)	5% protein and 95 % DNA
171.	The first virus to be shown that plants in	nfected v	with it contained a specific antigen
	is TD OV	D)	CMU
	A) TMV	B)	CMV
172	C) ChiVMV	D)	None
172.	Virus is transmitted by A) Seed	D)	Machaniaalla
	,	B)	Mechanically
172	C) Pollen	D)	All
173.	Select the incorrect pair A) Twent and d'Haralle Roctari	onhe acc	
	A) Twort and d'Herelle – BacterieB) B Goldstein – Distinguished tw		
	B) B Goldstein – Distinguished tw	o types (of Cell Hichasion

	C)	Hoggan – First report of Myz	ucnorcio	ego as a vector			
	D)		_				
174.		D) F.O. Holmes- Grouped viruses into persistent and non-persistent Select the incorrect pair					
1/7.	A)	-	arf disea	se and leaf hoppers – Hashimoto			
	B)	-		ns of leaf hoppers – T. Fukushi			
	C)	Nematode as vector of viruses					
	D)	Fungi as vector of viruses – G		timicy			
175.	a)	_	-	ree vector feeds on a virus source			
1/3.	b)	•		ee vector is allowed access to a virus			
	U)	source	vii us ii c	ce vector is anowed access to a virus			
	c)		rving ve	ector feeds on a virus free plant			
	d)		•	ector is allowed access to a virus-			
	,	free-plant Match the following					
	1.	Acquisition access period	,				
	2.	Acquisition feeding period					
	3.	Inoculation access period					
	4.	Inoculation feeding period					
	A)	1-b, 2-a, 3-c, 4-d	B)	1-d, 2- a, 3- d, 4- c			
	C)	1 b, 2- c, 3- d, 4- a	D)	1-b, 2-a, 3-d, 4-c			
176.		ermal inactivation point of non-p	,				
	A)	60°C	B)	69°C			
	C)	70°C	D)	65°C			
177.	Majority of the stylet borne viruses are transmitted by						
	A)	Whitefly	B)	Thrips			
	C)	Aphid	D)	Leaf hopper			
178.	Which one of the following is not a semi-persistent plant virus						
	A)	Bean yellow mosaic virus	B)	Cauliflower mosaic virus			
	C)	Soybean mosaic virus	D)	Cowpea mosaic virus			
179.	All species of nematodes known to transmit viruses belongs to the order						
	A)	Tylenchida	B)	Dorylaimida			
	C)	Aphelenchida	D)	Rhabditida			
180.	NEPO	NEPO (Nematode transmitted polyhedral) viruses are transmitted by					
	A)	Longidorus	B)	Xiphinema			
	C)	Both A and B	D)	Paralongidorus			
181.	NEPO	virus group includes					
	A)	Tomato black ring virus	B)	Grape vine fan leaf virus			
	C)	Tobacco ring spot virus	D)	Cherry leaf roll virus			
182.	Synchy	ytrium endobioticum transmits					
	A)	Potato virus X	B)	Potato virus Y			
	C)	Potato mop top virus	D)	Tobacco necrosis virus			

- 183. Intumescence or blister formation due to increase in intercellular water, as in leaves is known as
 - A) Osmosis
- B) Odema
- C) Accumulation
- D) Inclusion
- 184. Select the incorrect statement about whitefly
 - A) They belong to the order Hemiptera and are important pests
 - B) Presently three whitefly species viz., Bemisia tabaci, Trialeurodes vaporariorum and T abutiloneus are known to be vectors of viruses
 - C) They take in viruses through sucking through stylet from phloem
- 185. Females are more efficient than males in transmission and there is a transovarial passage of the virus
 - a) Feeds only on the phloem
 - b) Main method of spread is by wind
 - c) Eats the parenchyma tissue between vascular bundles leaving holes in the leaf
 - d) The three types of virus-vector relationship i.e., stylet borne, circulative and propagative have been observed

Match the following

- 1 Thrips
- 2 Beetle
- 3 Mites
- 4 Leaf hopper
- A) 1-a, 2-b, 3-c, 4-d
- B) 1-a, 2-c, 3-b, 4-d
- C) 1-a, 2-b, 3-d, 4-c
- D) 1-a, 2-c, 3-d, 4-b
- 186. The first successful experiment done to proof that several viruses that cause diseases multiply in their insect-vector was done by
 - A) Black & Brakke (1952)
 - B) Watson and Robert (1939)
 - C) Kennedy *et al.* (1962)
 - D) Bauer (1904)
- 187. Who first showed that grapevine fan leaf virus is transmitted by dagger nematode, *Xiphinema index*
 - A) Hewitt et al., (1958)
 - B) Bennett (1940)
 - C) Black & Brakke (1952)
 - D) Bauer (1904)

188.	The therr	nal inactivation point of 45-50 °C	of NEPO B)	viruses lies between 55-70 °C
	C)	75-90 °C	D)	95-100 °C
189.			,	ors used for vector control
109.	A)	-	_	gens, Chrysoparu filabris, Coccinella
	Λ)	septumpunctata	a converg	gens, Emysopara filaoris, Coccinetta
	B)		us nusill	us, Macrolophus cologinosus
	C)	Hoppers – Cryptolae		
	D)	Mealy bug – <i>Chryso</i>		
	E)	Both C and D	peria car	Treat
190.	,	e incorrect pair		
1,0.	A)	_	Point (TI	P): The temperature at which a virus is
)	rendered inactive who		· -
	B)		_	naximum dilution in multiples of 10, beyond
	2)	which infectivity is los		
	C)			d-point: The period for which the virus
	,			he laboratory at about 20°C.
	D)			evel of host resistance but one that may be
	,		_	and is therefore often race or strain specific.
191.	Stanley			ile of TMV won Nobel Prize in the year
	A)	1943	B)	1944
	C)	1945	D)	1946
192.	Size of	TMV		
	A)	240nm	B)	200nm
	C)	180nm	D)	280nm
193.	Therma	al inactivation point of	CMV is_	and Dilution End Point (DEP)
	is			
	A) 65	°C, 1:1000	B)	75 °C, 1:1000
	C) 60	°C, 1:10000	D)	70 °C, 1:10000
194.	Virus is a	ļ -		
	A)	Nucleoprotein	B)	Nucleoside
	C)	Nucleotide	D)	None
195.	Total nur	nber of viruses known	till date e	xceeds-
	A)	2000	B)	3000
	C)	1000	D)	5000
196.		naterial of a virus cons		
	A)	DNA or RNA	B)	RNA only
	C)	DNA only	D)	All of them
197.		iruses are -		
	A)	Bacilliform	B)	Cylindrical rod
	C)	Short	D)	All of them
		Guide book	of plant Po	athology ♦ 102

198.	Split gen	ome consists of			
	A)	Two or more distinct nu	ıcleic aci	id strand	s encapsidated in different particles
	B)	Only one type of nucle			
	C)	Only proteins are found		1	
	D)	None			
199.	,	ein envelops are present	in –		
	A)	Retrovirus	B)	Rhabd	ovirus
	C)	Bacteriophages	D)	All of	them
200.	,	f 12 component wound t		rus is-	
	A)	15×106 daltons	B)		6 daltons
	C)	16×106 daltons	D)	None	
201.	,	ne is also known as –	,		
	A)	Uracil	B)	Methy	d uracil
	C)	Pyrimidine	D)	None	
202.	,	le of viral protein coat is			
	A)	Protective sheath	B)	Vector	transmissibility
	C)	Increase in infectivity			J
	D)	All of these			
203.	,	me that synthesizes RN	A from	a DNA	is —
	A)	RNAase	B)		transcriptase
	C)	RNA polymerase	D)	None	
204.	,	enter cells by means of-	,		
	A)	Wounds		B)	By vectors
	C)	By infected pollen grain	ns	D)	All of them
205.	,			/	ximately after inoculation of –
	A)	10 hr	B)	12 hr	J
	C)	15 hr	D)	11 hr	
206.	,	ection in host cells viruse	,		
	A)	Parenchyma cells			odesmata
	C)	Mitochondria	D)	All of	
207.	,	ation of plants immediat	,		
	A) 1	Decreases	B)	Increa	-
	C)	No change	D)	None	
208.	/	<u> </u>	/		s of virus transmission is-
	A)	Pollen	B)	Seed	
	C)	Insect	D)	Allof	them
209.	,	hat persist in vector for	,		
	A)	Propagative virus	B)		ropagative
	C)	Semi-persistent	D)	None	
	-	<u> </u>	_		

210.	Viruses transmitted by insects with chewing mouthparts are called-			
	A)	Non-propagative	B)	Propagative
	C)	Circulative	D)	Non-circulative
211.	Insect v	ectors that acquire and	inoculat	te the virus after short feeding periods of a
few s	seconds t	o a few minutes are cal	lled	
	A)	Non-persistent	B)	Semi-persistent
	C)	Persistent	D)	None
212.	Circulative viruses that multiply in their respective vectors are known as-			
	A)	Non-propagative	B)	Propagative
	C)	Semi-propagative	D)	None
213.	Nepo viruses are transmitted by –			
	A)	Fungi	B)	Nematodes
	C)	Bacteria	D)	Aphids
214.	Tobacco rattle and pea early browning viruses are transmitted by-			
	A)	Trichodorus	B)	Paratrichodorus
	C)	Both	D)	None

VIROLOGY

- 1. Ans: B, Bymovirus (Source: The elements of Plant Virology by Kolte and Tewari, Page No-131)
- 2. Ans: D, All of the above (Source: The elements of Plant Virology by Kolte and Tewari, Page No-134)
- 3. Ans: C, Fijivirus (Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 4. Ans: C, Both A and B (Source: The elements of Plant Virology by Kolte and Tewari, Page No-134)
- 5. Ans: B, Persistent (Source: The elements of Plant Virology by Kolte and Tewari, Page No-51)
- 6. Ans: C, Persistent (Source: The elements of Plant Virology by Kolte and Tewari, Page No-51)
- 7. Ans: D, Both A and B (Source: The elements of Plant Virology by Kolte and Tewari, Page No-51)
- 8. Ans: B, M.W. Beijerink (Source: The elements of Plant Virology by Kolte and Tewari, Page No-27)
- 9. Ans: A, M. Knoll & E. Ruska (Source: The elements of Plant Virology by Kolte and Tewari, Page No-27)
- 10. Ans: D, Adolf Mayer (Source: The elements of Plant Virology by Kolte and Tewari, Page No-27)
- 11. Ans: D, D. Ivanowaski (Source: The elements of Plant Virology by Kolte and Tewari, Page No-27)
- 12. Ans: B, W. M. Stanley (Source: The elements of Plant Virology by Kolte and Tewari, Page No-27)
- 13. Ans: D, Kassanis (Source: The elements of Plant Virology by Kolte and Tewari, Page No-27)
- 14. Ans: A, Heat (Source: The elements of Plant Virology by Kolte and Tewari, Page No-204)
- 15. Ans: C, Virion (Source: The elements of Plant Virology by Kolte and Tewari, Page No-111)
- 16. Ans: B, Monopartite (Source: The elements of Plant Virology by Kolte and Tewari, Page No-112)
- 17. Ans: D, All of the above (Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 18. (Ans: D, All of the above (Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 19. (Ans: D, All of the above (Source: The elements of Plant Virology by Kolte and Tewari, Page No-132)

- 20. Ans: D, All of the above (Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 21. Ans- c. 5-40% (page- 729, G.N. Agrios 5th edition)
- 22. Ans- b. Spherical viruses (page- 729, G.N. Agrios 5th edition)
- 23. Ans- d. Potyvirus (page- 727, G.N. Agrios 5th edition)
- 24. And- d. 158 (page- 730, G.N. Agrios 5th edition)
- 25. Ans- a. ssRNA, dsRNA, 40, 110(page- 731, G.N. Agrios 5th edition)
- 26. Ans c. 17.6K (page- 732, G.N. Agrios 5th edition)
- 27. Ans. c. Both a and b (page- 737, G.N. Agrios 5th edition)
- 28. Ans- b. Natural root grafts (page- 739, G.N. Agrios 5th edition)
- 29. Ans- a. Non-persistent (page- 742, G.N. Agrios 5th edition)
- 30. Ans- d. Both a and c (page- 742, G.N. Agrios 5th edition)
- 31. Ans- c. Tobacco rattle virus (page- 749, G.N. Agrios 5th edition)
- 32. Ans- d. Chrysomelid beetles (page- 750, G.N. Agrios 5th edition)
- 33. Ans- a. Membranous circular particle (page 750, G.N. Agrios 5th edition)
- 34. Ans- a. (+)ssDNA (page 751, G.N. Agrios 5th edition)
- 35. Ans-b. Ribavirin (page-756, G.N. Agrios 5th edition)
- 36. Ans- c. Closterovirus (page- 774, G.N. Agrios 5th edition)
- 37. Ans-d. Waikavirus (page-779, G.N. Agrios 5th edition)
- 38. Ans. a.Furovirus (Page- 761, G.N. Agrios 5th edition)
- 39. Ans. d. All of the above (page- 750, G.N. Agrios 5th edition)
- 40. Ans- d. All of the above(page 821, G.N. Agrios 5th edition)
- 41. Ans. c. Beijerinck (page- 2, Plant viruses, diseases and their management, K.K. Biswas)
- 42. Ans. d. Both b and c (page- 4, Plant viruses, diseases and their management, K.K. Biswas)
- 43. Ans. b.Kassanis (page- 5, Plant viruses, diseases and their management, K.K. Biswas)
- 44. Ans. d. Fukushi (page- 4, Plant viruses, diseases and their management, K.K. Biswas)
- 45. Ans. b. Rosalind Franklin (Page- 4, Plant viruses, diseases and their management, K.K. Biswas)
- 46. Ans. c. Kaper *et al* (page- 6, Plant viruses, diseases and their management, K.K. Biswas)
- 47. Ans: A. Neuraminidase (Source: Plant Bacteriology, pg: 235)
- 48. Ans: D. Andre.L. Woff (Source: Plant Bacteriology, pg: 231)
- 49. Ans: B. Nucleoid (Source: Plant Bacteriology, pg: 233)
- 50. Ans: B. 252 (Source: Plant Bacteriology, pg: 234)
- 51. Ans: A. d'Herelle (Source : Plant Bacteriology, pg : 240)
- 52. Ans: C. Gierer & Schramm (Source: Plant Bacteriology, pg: 242)

- 53. Ans: B. 1-3 X 106 Daltons (Source: Plant pathology by G.N Agrios, pg: 730)
- 54. Ans: A. Satellite viruses (Source: Plant pathology by G.N Agrios, pg: 731)
- 55. Ans: C. 1mm (Source: Plant pathology by G.N Agrios, pg: 733)
- 56. Ans: A. Latent virus (Source: Plant pathology by G.N Agrios, pg: 737)
- 57. Ans: B. Homoptera (Source: Plant pathology by G.N Agrios, pg: 741)
- 58. Ans: A. Xiphinema index (Source: Plant pathology by G.N Agrios, pg: 742)
- 59. Ans: A. Hybridomas (Source: Plant pathology by G.N Agrios, pg: 744)
- 60. Ans: A. Cauliflower mosaic virus (Source: Plant pathology by G.N Agrios, pg: 750)
- 61. Ans: B. Propagative virus (Source: Plant pathology by G.N Agrios, pg: 742)
- 62. Ans: C. Pollen (Source: Plant pathology by G.N Agrios, pg: 741)
- 63. Ans: C Beijerinck (p no.-25)

(SOURCE-THE ELEMENTS OF PLANT VIROLOGY

BY S.J. KOLTE & A.K. TEWARI)

- 64. Answer-c) 1,3&4 (page no.-6)
- 65. Answer- b) 19 families & 81 groups (page no.-122)
- 66. Answer- a)Non- circulative non-persistent transmission (page no.-48)
- 67. Answer -a)Potyvirus(p no. 51)
- 68. Answer- b) 4-10 hours(p no. 51)
- 69. Answer-a) 10-100 hours(p no. 51)
- 70. Answer- c) More than 100 hours(p no. 51)
- 71. Answer- d) 12 hours or more(p no. 51)
- 72. Answer- c) Cauliflower mosaic virus(p no. 51)
- 73. Answer-b) Citrus tristeza virus
- 74. Answer-d) All of the above(p no. 51)
- 75. Answer- a) Nephotettix cinctiticeps(p no.-51)
- 76. Answer- a) Aphids(p no.-52)
- 77. Answer- b) Myzus persicae(p no.-54)
- 78. Answer- c) Aleurodidae(p no.-52)
- 79. Answer- a) Leaf hopper(p no.-54)
- 80. Answer -a) Bemisia tabacci(p no.-55)
- 81. Answer- c)Begomovirus(p no.-55)
- 82. Answer- a) seed borne (p no.-45)
- 83. Answer-d) Transmission threshold period(p no.-48)
- 84. Answer- c) Virus (p no.-278)
- 85. Answer- d) Chenopoduim amaranticolor
- 86. Answer- b) 1971 (p no.-129)
- 87. Answer- a) Tobamoviruses (p no.-137)
- 88. Answer- c) 6400 (p no.-137)

- 89. Answer -All of the above (p no.-137)
- 90. Answer- b) 4 (P no.-137)
- 91. Answer- a) Rx (p no.-210)
- 92. Answer- c) Lycopersicon esculentum(p no.-210)
- 93. Answer-a)Mckinney(p no.-18)
- 94. **Ans:** C, Semper Augustus Tulip (Source: Comparative plant virology, Roger Hull, Page No. 5)
- **95. Ans: A**, Cryptovirus (Source: Comparative plant virology, Roger Hull, Page No. 29)
- **96. Ans: B**, PVX (Source: Comparative plant virology, Roger Hull, Page No. 32)
- **97. Ans: D**, Umbravirus & Luteovirus (Source: Comparative plant virology, Roger Hull, Page No. 27)
- **98. Ans: B**, Subliminal infection (Source: Comparative plant virology, Roger hull, Page No. 40)
- **99. Ans:** C, Electron dense (Source: Comparative plant virology, Roger Hull, Page No. 35)
- **100. Ans: D**, Hop Latent viriod (Source: Comparative plant virology, Roger Hull, Page No. 44)
- **101. Ans:** C, Nucleoplasm (Source: Comparative plant virology, Roger Hull, Page No. 45)
- **102.** Ans: B, 5 (Source: Comparative plant virology, Roger Hull, Page No. 47)
- 103. Ans: A, Nepovirus (Source: Comparative plant virology, Roger Hull, Page No. 53)
- **104. Ans: D**, DNA Replicase (Source: Comparative plant virology, Roger Hull, Page No. 68)
- **105.** Ans: B, Aspartate (Source: Comparative plant virology, Roger Hull, Page No. 70)
- **106. Ans: D**, Both A and C (Source: Comparative plant virology, Roger Hull, Page No. 71)
- **107. Ans: A**, 10 -3 to 10 -4 (Source: Comparative plant virology, Roger Hull, Page No. 74)
- **108. Ans: D**, All of the above (Source: comparative plant virology, Roger Hull, Page No. 76)
- **109. Ans: B**, TYLLV and TYLCSV (Source: Comparative plant virology, Roger Hull, Page No. 76)
- **110. Ans:** C, Matrix & Glycoprotein (Source: Comparative plant virology, Roger Hull, Page No. 102)
- **111. Ans: D**, Rice Tungro virus 5 partite (Source: comparative plant virology, Roger Hull, Page No. 101)
- **112. Ans: B**, Rice Tungro Bacilliform Virus (Source: Comparative plant virology, Roger Hull, Page No.106)
- **113. Ans:** C, Epidermis (Source: Comparative plant virology, Roger Hull, Page No. 122)

- **114. Ans: B,** Shepherd et al (1968) (Source: HC Dube: Modern Plant Pathology, page: 77)
- **Ans: A,** Goodman et al (1977) (Source: HC Dube: Modern Plant Pathology, page: 77)
- 116. Ans: D, All of the above (Source: HC Dube: Modern Plant Pathology, page: 78)
- 117. Ans: D, All of the above (Source: HC Dube: Modern Plant Pathology, page: 82)
- 118. Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 82)
- 119. Ans: D, All of the above (Source: HC Dube: Modern Plant Pathology, page: 83)
- 120. Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 83)
- 121. Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 83)
- **122. Ans: D,** All of the above (Source: HC Dube: Modern Plant Pathology, page: 83)
- 123. Ans: A, Potyviridae (Source: HC Dube: Modern Plant Pathology, page: 83)
- 124. Ans: A, Sequiviridae (Source: HC Dube: Modern Plant Pathology, page: 83)
- 125. Ans: A, Tobusviridae (Source: HC Dube: Modern Plant Pathology, page: 83)
- 126. Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 85)
- 127. Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 86)
- **128.** Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 86, 87)
- **129. Ans:** C, Bawden & Pirie (1938) Source: HC Dube: Modern Plant Pathology, page: 101)
- **130. Ans: B,** T.O Deiner (1971) (Source: HC Dube: Modern Plant Pathology, page: 104)
- **131. Ans: A,** 1000-140000 Daltons (Source: HC Dube: Modern Plant Pathology, page: 104)
- **132.** Ans: C, Both A & B (Source: HC Dube: Modern Plant Pathology, page: 105)
- **133.** Ans: D, All of the above (Source: HC Dube: Modern Plant Pathology, page: 106)
- **134.** Ans: C, Pruseiner (1982) (Source: HC Dube: Modern Plant Pathology, page: 106)
- **135. Ans: A,** *Cochliobolus victorae* (Source: HC Dube: Modern Plant Pathology, page: 179)
- **136. Ans: A,** *Alternaria alternata* (Source: HC Dube: Modern Plant Pathology, page: 180)
- 137. Ans: A, Virus (Source: Plant Pathology, Agrios, Pg-725)
- **138.** Ans: C, 17nm (Source: Plant Pathology, Agrios, Pg-729.)
- **139.** Ans B, 60nm (Source: Plant Pathology, Agrios, Pg-729.)
- **140.** Ans A, 2 (Source: Plant Pathology, Agrios, Pg-729.)
- 141. Ans C, 60-95% (Source: Plant Pathology, Agrios, Pg-729.
- 142. **Ans: D**, Otion A & B (Source: Plant Pathology, Agrios, Pg-731.)
- **143. Ans: B**, Nucleic Acid (Source: Plant Pathology, Agrios, Pg-731.)
- **144.** Ans: C, 10 (Source: Plant Pathology, Agrios, Pg-733.)
- **145.** Ans: C, 6 (Source: Plant Pathology, Agrios, Pg-781.)
- 146. **Ans: A**, Longidorus (Source: Plant Pathology, Agrios, Pg-787.)
- **147. Ans C**, Non-persistent (Source: Plant Pathology, Agrios, Pg-788)

 Guide book of plant Pathology ◆ 109

- **148.** Ans: B, 4 (Source: Plant Pathology, Agrios, Pg-790)
- **149.** Ans: A, Prunus Necroric Virus (Source: Plant Pathology, Agrios, Pg-791)
- **150.** Ans: C, Reoviride (Source: Plant Pathology, Agrios, Pg-792)
- **151.** Ans: C, Both (Source: Plant Pathology, Agrios, Pg-796)
- **152. Ans: B**, Thrips (Source: Plant Pathogolgy, Agrios, Pg-799)
- 153. Ans: B, Rice Grassy Stunt Virus (Source: Plant Pathology, Agrios, Pg-801)
- 154. Ans: C, Mealy Bugs (Source: Plant Pathology, Agrios, Pg-803)
- 155. Ans: C, Tree Hopper (Source: Plant Pathology, Agrios, Pg-805)
- **156.** Ans: A, Myndus taffini (Source: Plant Pathology, Agrios, Pg-815)
- 157. Ans: B, Pentalonia nigronervosa (Source: Plant Pathology, Agrios, Pg-814)
- **158. Ans: B**, Bipartite (Source: Plant Pathology, Agrios, Pg-812)
- **159.** Ans: D, All (Source: Plant Pathology, Agrios, Pg-813)
- **160. Ans: B**, Whitefly (Source: Plant Pathology, Agrios, Pg-810)
- **161.** Ans: B, Beet Curly Top virus (Source: Plant Pathology, Agrios, Pg-809)
- **162.** Ans: D, All (Source: Plant Pathology, Agrios, Pg-739)
- **163.** Ans: D, 10-14 (Source: Plant Pathology, Agrios, Pg-739)
- **164. Ans:** C, dsDNA (Source: Plant Pathology, Agrios, Pg-750)
- **165.** Ans: B, Fungus (Source: Plant Pathology, Agrios, Pg-750)
- **166.** Ans: A, dsRNA (Source: Plant Pathology, Agrios, Pg-750)
- **167.** Ans: B, 3-7 days (Source: Plant Pathology, Agrios, Pg-739)
- 168. Ans: C, Non-persistent (Source: Plant Pathology, Agrios, Pg-742)
- **169.** Ans: B, Mites (Source: Plant Pathology, Agrios, Pg-742)
- 170. Ans: A, 95 % Protein, 5% RNA (Source: Plant Pathology, Agrios, Pg-757)
- 171. Ans: A, TMV (Source: Plant Pathology, Agrios, Pg-757)
- 172. Ans: D, All (Source: Plant Pathology, Agrios, Pg-741)
- **173. Ans: D**, F.O. Holmes- Group viruses into persistent and non-persistent (Source: Elements of plant virology, Pg 17-20)
- **174. Ans:** C, Nematode as vector of viruses- Mckinney (Source: Elements of plant virology, Pg 27)
- 175. Ans: D, 1b, 2a, 3d, 4c (Source: Elements of plant virology, Page 47)
- 176. Ans: A, 60°C (Source: Elements of plant virology, Page 48)
- 177. Ans: C, Aphid (Source: Elements of plant virology, Page 48)
- 178. Ans: B, Cauliflower mosaic virus (Source: Elements of plant virology, Page 51)
- 179. **Ans: B**, Dorylaimida (Source: Elements of plant virology, Page 59)
- **180.** Ans: C, Both A and B (Source: Elements of plant virology, Page 59)
- 181. **Ans: D**, Cherry Leaf Roll Virus (Source: Elements of plant virology, Page-59)
- **182.** Ans: A, PVX (Source: Elements of plant virology, Page 60)
- **183.** Ans: B, Odema (Source: Elements of plant virology, Page 306)
- **184.** Ans: D (Source: Elements of plant virology, Page 55)
- **185.** Ans: B, 1a, 2c, 3b, 4d (Source: Elements of plant virology, Page 54-57)
- **186.** Ans: A, Black & Brakke (1952) (Source: Elements of plant virology, Page 50)

 Guide book of plant Pathology ♦ 110

- **187.** Ans: A, Hewitt et al. (1958) (Source: Elements of plant virology, Page 58)
- **188.** Ans: B, 55-70°C (Source: Elements of plant virology, Page 59)
- **189.** Ans: E, Both C and D (Source: Elements of plant virology, Page 208)
- **190.** Ans: D, Horizontal resistance (Source: Elements of plant virology, Page 191)
- 191. Ans: D, 1946 (Source: Elements of plant virology, Page 161)
- **192.** Ans: A, 240nm (Source: Elements of plant virology, Page 138)
- 193. Ans: D, 70°C -1:10000 (Source: Elements of plant virology, Page 150)
- 194. Ans: A, Nucleoprotein (Source: G. N. Agrios, Plant Pathology, Page no.: 724)
- 195. Ans: A, 2000 (Source: G. N. Agrios, Plant Pathology, Page no.: 724)
- 196. Ans: A, DNA or RNA (Source: G. N. Agrios, Plant Pathology, Page no.: 724)
- 197. Ans: A, Bacilliform (Source: G. N. Agrios, Plant Pathology, Page no.: 725)
- 198. Ans: A, Source: G. N. Agrios, Plant Pathology, Page no.: 725)
- 199. Ans: B, Rhabdovirus (Source: G. N. Agrios, Plant Pathology, Page no.: 725)
- 200. Ans: C,16 X 106 Daltons (Source: G. N. Agrios, Plant Pathology, Page no.: 729)
- 201. Ans: B, Methyl Uracil (Source: G. N. Agrios, Plant Pathology, Page no.: 730)
- 202. Ans: D, All of these (Source: G. N. Agrios, Plant Pathology, Page no.: 730)
- 203. Ans: C, RNA Polymerase (Source: G. N. Agrios, Plant Pathology, Page no.: 730)
- **204.** Ans: **D**, All of them (Source: G. N. Agrios, Plant Pathology, Page no.: 733)
- 205. Ans: A, 10 hour (Source: G. N. Agrios, Plant Pathology, Page no.: 733)
- **206.** Ans: A, Parenchyma cells (Source: G. N. Agrios, Plant Pathology, Page no.: 730)
- **207. Ans: B**, Increases (Source: G. N. Agrios, Plant Pathology, Page no.: 739)
- **208.** Ans: C, Insect (Source: G. N. Agrios, Plant Pathology, Page no.: 741)
- 209. Ans: C, Semi-persistent (Source: G. N. Agrios, Plant Pathology, Page no.: 741)
- **210. Ans:** C, Circulative (Source: G. N. Agrios, Plant Pathology, Page no.: 742)
- 211. Ans: A, Non-persistent (Source: G. N. Agrios, Plant Pathology, Page no.: 742)
- 212. Ans: B, Propagative (Source: G. N. Agrios, Plant Pathology, Page no.: 742)
- 213. Ans: B, Nematode (Source: G. N. Agrios, Plant Pathology, Page no.: 742)
- 214. Ans: C, Both (Source: G. N. Agrios, Plant Pathology, Page no.: 742)

7. DISEASES OF CROP PLANTS

1.	Rust o	f soyabean is caused by		
	A.	Puccinia	B.	Uromyces
	C.	Phakospora	D.	Phragmidium
2.	Genus	Phragmidium causes rust diseas	e in	-
	A.	Rose	В.	Cedar Apple
	C.	Pine	D.	Linseed
3.	Which	of the following can be grown ir	n culture	medium
	A.	Rust fungi	В.	Powdery Mildew
	C.	Downy Mildew	D.	All of the Above
4.	Sudden	n oak death is caused by		
	A.	Phytophthora cinnamoni	В.	Phytophthora lateralis
	C.	Phytophthora ramorum	D.	None of the above
5.	Downy	y mildew of onion is caused by		
	A.	Peronospora destructor	В.	Peronospora parasitica
	C.	Peronospora effuse	D.	None of the above
6.	Downy	y mildew of crucifers is caused by	у	
	A.	Peronospora destructor	В.	Peronospora parasitica
	C.	Peronospora effuse	D.	None of the above
7.	Most d	levastating disease of potato in the	he world	
	A.	Early blight disease	В.	Late Blight disease
	C.	Potato leaf Roll	D.	Bacterial wilt of Potato
8.	Peach	leaf curl is caused by		
	A.	Virus	В.	Fungi
	C.	Bacteria	D.	Viroid
9.		ery mildew in rose is caused by		
	A.	Microsphaera	В.	Sphaerotheca
	C.	Uncinula	D.	Podosphaera
10.		ery mildew of apple and pear is o		
	A.	Microsphaera	В.	Sphaerotheca
	C.	Uncinula	D.	Podosphaera
11.		y dew stage" is seen in disease		
	A.	Anthracnose of bean	В.	Scab of apple
	C.	Ergot of Sorghum	D.	Smut of maize
		Guide book of plant P	athology	♦ 112

12.	The a	alternate host of stem rust of who	eat				
	A.	Rice	В.	Sugarcane			
	C.	Barberry	D.	Pea			
13.	Who	developed aureofungin a new and	tifungal	antibiotics for use in plant disease			
	contro	-	C	•			
	A.	Norman Borlaug	B.	Thirumalachar			
	C.	Vander Plank	D.	Luthra			
14.	Whic	ch one of the following is common	nly calle	d as "Bread mold"			
	A.	Aspergillus niger	В.	Saccharomyces cerevisiae			
	C.	Rhizopus stolonifer	D.	Penicillium spp.			
15.	Sacci	haromyces cerevisiae is used fo	r				
	A.	Baking	B.	Brewing			
	C.	Brewing and Baking	D.	Brewing, Baking, and for making			
	probi	otic					
16.	Cige	r end rot diseases of Banana caus	sed by				
	A.	Fusarium oxysporum f. sp.c	ubense				
	В.	Ralstonia Solanacearum					
	C.	Verticillium theobromae					
	D.	Mycospharellamusicola					
17.	Red S	Red Stele diseases of strawberry caused by -					
	A.	Colletotrichum fragariae	В.	Phytophthora fragariae			
	C.	Phytophthora caltorum	D.	Marssoninafragariae			
18.	Choo	Choose the correct one- "Rice fever disease is"					
	A.	Rice Blast	В.	BLB			
	C.	Bacterial leaf streak	D.	Brown leaf spot			
19.	Anan	Anamorphic stage of brown leaf spot of rice					
	A.	Pyriculariaoryzae	В.	Bipolarisoryzae			
	C.	Cochliobolusmiyabeanus	D.	Magnaporthe grisea			
20.	Krese	Kresek phase is found in					
	A.	Rice blast	В.	BLB			
	C.	Bacterial leaf streak	D.	Brown leaf spot			
21.	Fire b	olight forecasting model are-					
	A.	BLITECAST	В.	MERYBLYT and COUGARBLIGHT			
	C.	FAST	D.	EPIDEM			
22.	Rato	on stunting of sugarcane caused	by-				
	A.	Acidovoraxavenae	В.	Leifsoniaxyli subsp. Xyli			
	C.	Xanthomonas axanopodisp.					
	D.	Xanthomonas campestris p.v	v. campe	estris			

23.	Pineapple disease of sugarcane is caus	•	T
	A. Ceratocystis paradoxa	В.	Leveillulataurica
	C. Uromyces fabae	D.	Ceretostomellaparadoxa
24.	Akiochi disease is due to-		
	A. Sulphur toxicity	В.	Copper toxicity
	C. Zinc toxicity	D.	Boron toxicity
25.	Pahala blight of sugarcane due to defic	_ *	
	A. Mn	В.	Boron
	C. Cu	D.	Mo
26.	Zearalenone is a sex hormone produce	•	
	A. Aspergillus	В.	Penicillium
	C. Fusarium	D.	Rhizopus
27.	Orobanche is a		
	A. Holo root parasite	В.	Holo Stem parasite
	C. Semi root parasite	D.	Root parasite
28.	Organism that uses chemical compoun		
	A. Obligate parasite	В.	Biotroph
	C. Chemotroph	D.	Autotroph
29.	A pore like opening in perithecia and p	ycnia th	rough which spores escape from
	fruiting body is-		
	A. Ostiole	В.	Paraphysis
	C. Ascostroma	D.	Locules
30.	Wart disease of potato first reported in Ir		
	A. Sikkim	В.	UP
	C. Bihar	D.	Darjeeling
31.	Smut of Pearl millet is caused by-		
	A. Tolyposporiumpenicilliariae		Sporisoriumscitaminium
	C. Puccinia graministritici	D.	Puccinia recondite
32.	The process that aims at preventing en	-	_
	non-infested areas at international level		
	A. Quarantine	В.	Isolation
	C. Disease escape	D.	Inspection
33.	Which of the following is not a method of		
	A. The entry of pathogen through	natural	openings
	B. Reproduction by pathogen		
	C. Reducing the quantity of yield		
	D. Direct penetration of the patho	-	
34.	Sometimes the leaves are devoid of any	y pigmei	nt and look bleached or white. This
	condition is known as-		
	A. Albinism	В.	Etilation
	C. Hyperplasia	D.	Chromosis
	Guide book of plant P	athology	♦ 114

35.		ant and causes abnormal increase		nes due to the biochemical activity in of affected organs, this condition
			D	Hymomelogie
	A.	Hypertrophy	В.	Hyperplasia Both A & B
26	C.	Gummosis	D.	Both A & B
36.		ckle disease of wheat is caused	-	4
	A.	Puccinia tritici	В.	Anguinatritici
27	C.	Corynebacterium tritici	D.	None of these
37.	of cro	h of the following is not a method ps?	ı by wn	ich pathogens affect the yield
	A.	Reduce the quantity of yield		
	В.	Reduce the quality of crop pro	duce	
	C.	Increase in cost production		
	D.	Increase the flowering period		
38.	Root l	knot of Brinjal (egg plant) is caus	sed by	
	A.	Meloidogyne incognita		
	В.	Fusarium udum		
	C.	Pseudomonas rubrillineans		
	D.	Anguina solanacearum		
39.	Wilt o	of pigeon pea is caused by		
	A.	Xanthomanascitri	В.	Fusarium udum
	C.	Phytophthora infestans	D.	Pseudomonas rubrilineans
40.	White	rust of crucifers by		
	A.	Albugo	В.	Ustilago
	C.	Puccinia	D.	Phytophthora
41.	Down	y mildew disease is caused by		
	A.	Albugo	В.	Puccinia
	C.	Peronospora	D.	Phytophothora
42.	Wart o	disease of potato is caused by		
	A.	Personospora destructor	В.	Phytophthora infestans
	C.	Phythiumdebaryanum	D.	Synchytriumendobioticum
43.	Which	h is responsible for wood rot?		
	A.	Erysiphe	В.	Polyporus
	C.	Lycoperdon	D.	None of these
44.		mut of pearlmillet (caused by To	oltjposp	- · · · · · · · · · · · · · · · · · · ·
	A.	Internally seed borne	В.	Externally seed borne
	C.	Soil borne	D.	All of these
45. 'Li		f' in Apple is caused by deficience	•	
	A.	Zn	В.	Bacteria
	C.	N	D.	Cl

46.	Soil m	icro-organisms are most active at	: —				
	A.	I8-20°C	B.	26-28°C			
	C.	30-32°C	D.	34-36 °C			
47.	Select	the wrong pair—					
	A. Ergot of bajra: Claviceps fusifonnis						
	В.	False smut of rice: Ustilagono		ens			
	C.	Ergot of rye: Claviceps purpu					
	D.	Red rot of sugarcane: Colleton		gloeosporiodes			
48.	Rust in	icludes in-					
	A.	Deuteromycotina	B.	Basidiomycotina			
	C.	Ascomycotina	D.	Oomycetes			
49.	The pa	thogen grows from the point of e	ntry to v	varying extents without showing			
	advers	e effect on tissue through which	it passes	s is known as			
	A.	Systemic infection	B.	Invasion			
	C.	Colonisation	D.	None of the above			
50.	Carrot	bacterial gall disease is caused b	y-				
	A.	Rhizomonassuberifaciens	В.	Rhizobacterdaucus			
	C.	Rhodococcussuberifaciens	D.	Rhizoctoniasolani			
51.	Which	of the following is an example o	f a seed	-borne disease?			
	A.	Black rot of cabbage	B.	Bean mosaic			
	C.	Brown rot of potato	D.	All of the above			
52.	Which	of the following bacteria is respo	nsible f	or soft rots in plants?			
	A.	Erwiniaamylovora	B.	Xanthomonascampestris			
	C.	Erwiniacarotovora	D.	All of the above			
53.	Bacter	ial sorghum and corn strips are c	aused by	y-			
	A.	Pseudomonas andropogonis	В.	Pseudomonas avenae			
	C.	Pseudomonas rubrilineans					
	D.	Pseudomonas syringaep.v.tab	paci				
54.	Which	of the following is an example o	f a seed	-borne disease?			
	A.	Bacterial blight of rice					
	B.	Black arm or angular leaf spot	of cottor	1			
	C.	Grassy shoot of sugarcane					
	D.	All of the above					
55.	Which	of the following plant pathogenic	bacteri	a is responsible for peach bacterial			
	decline	e and canker?					
	A.	Pseudomonas syringaep.v.per	rsicae				
	B.	Pseudomonas syringaep.v.mo	rspurno	rum			
	C.	Pseudomonassyringaep.v.syri					
	D.	None of the above					

56.	Which	of the following plant pathogenic	bacteria	is responsible for
	crucife	r black rot?		
	A)	Pseudomonas syringaep.v.cor	onafaci	ens
	B)	Xanthomonascampestrisp.v.tra	anslucer	ıs
	C)	Xanthomonascampestrisp.v.ve	sicatori	a
	D)	Xanthomonascampestrisp.v.ca	mpestri	S
57.	Érwinie	aamylovora bacteria cause fire b	-	
	overwi	•	Ü	
	A.	Seed	B.	Stubbles
	C.	Margins of canker	D.	Soil
58.		S		rum causes lesions on young stems
		ow long and black, displaying dise		• •
	A.	Black leg	В.	Black arm
	C.	Black rot	D.	Blackfire
59.				s observed for dispersal of bacterial
<i>.</i>		eak pathogen (<i>Xanthomonasor</i>)		•
	A.	Tendril like	В.	Bead like (splash)
	C.	Both A and B	D.	None of the above
60.				lize lactose, maltose and cellobiose
00.	A.	<i>Adisioniasoianacearum</i> oiovai dog	B.	2
	A. C.	3	Б. D.	4
61.		•	υ .	4
01.		om of Black arm of cotton Boll rot	D	Cardinaliate anadantafarat
	A.		B.	Seedling blight, angular leaf spot
6 2	C.	Black arm	D.	All
62.		al canker was first reported in In	-	D . 1 1 1040
	A.	Yadav 1996	В.	Patel et al. 1948
	C.	Sarmahet al. 1998	D.	None
63.		usal organism of bacterIal blight	-	-
	A.	EPS	В.	КОН
	C.	Oxidase	D.	All.
64.		wilt is caused by		
	A.	Ralstoniasolanacearum		
	В.	Pantoeastewartii subsp. Stewar	rtii	
	C.	Both		None
65.	BE	BTV was first reported in India ir	ı 1940 ir	n the state of
	A.	Kerala	В.	Karnataka
	C.	Tamil Nadu	D.	Andhra Pradesh
66.	L and Y	I shaped crack is a characteristic	sympto	m of
	A.	Bacterial blight of pomegranate	B.	Bacterial blight of mango
	C.	Bacterial blight of citrus	D.	None

67.	The c	colony of Xanthomonas spp.	is	in colour			
	A.	Pink	В.	Blue			
	C.	Yellow	D.	Colourless			
68.	Pusa	Basmati-1 is a resistant culti-	var of				
	A.	Bacterial blight	В.	Bacterial leaf spot			
	C.	Bacterial streak	D.	None			
69. W	hich on	e of the following is a non-h	ost for Rals	toniasolanacearum			
	A.	Tomato	В.	Potato			
	C.	Cotton	D.	Chili			
70.	Bana	na bunchy top disease was fir	st described	l in 1889 in			
	A.	Mediterranean	В.	Sri Lanka			
	C.	Fiji	D.	India			
71.	Selec	t the incorrect pair					
	A.	Tobacco mosaic disease-	Adolf Maye	er			
	В.	Satellite viruses – B. Kass	anis				
	C.	Spiroplasma –Davis and V	Vorley				
	D.	Phytoplasma-Prusiner					
72.	a)	Albication	b)	Rosetting			
	c)	Chlorosis	d)	Dwarfing			
	Matc	h the following					
	1)	Severe reduction of internode growth					
		without comparable reduct					
	2)	When repression of colour	_				
	3)	When repression of colour					
	4)			por-tionality between various organ	ns		
	A.	1-d, 2-c, 3-b, 4- a	В.	1-d, 2- a, 3- c, 4- b			
	C.	1- b, 2- c, 3- a, 4-d	D.	1- b, 2-a, 3-c, 4-d			
73.		t the correct pair					
	A.	A. Vein banding-Tissues close to veins turns yellow and rest of the lamina					
		remains green.					
	В.	•	se to veins r	remains green and rest of the			
		laminaturns yellow.					
	C.	Puckering – Pouch like de	_				
	D.	Reddening – Melanin like		-			
74.		_	_	nt parts resulting from excessive			
	_	th of the upperside of the plan		- 410 ·			
	A.	Epinasty	В.	Proliferation			
	C.	Fasciation	D.	Tumefaction			

```
75.
       Spongospora subterranean is known to transmit
        A.
                Potato virus X
                                                В.
                                                        Potato virus Y
        C.
                Potato mop top virus
                                               D.
                                                        Tobacco necrosis virus
76.
        The frequency of occurrence of unlike particles in the progeny of viruses
               0.1-0.5 %
                                                В.
                                                        0.5-2 %
        A.
                2-3 %
        C.
                                                D.
                                                        3-4.5 %
77.
                Dahlia mosaic virus
                                               b)
                                                        Cowpea chlorotic mottle virus
        a)
                Peanut stunt virus
                                                d)
                                                        Tobacco streak virus
        c)
                Bean pod mottle virus
        e)
        Match the following
                Caulimovirus group
        1)
                                                2)
                                                        Comovirus group
        3)
                Ilarvirus group
                                                        Cucumovirus group
                                                4)
        5)
                Bromovirus group
        A.
                1-a, 2-e, 3-d, 4-c, 5-b
                                                В.
                                                        1-b, 2-a, 3-c, 4-e, 5-d
       C.
                1-d, 2-a, 3-e, 4-b, 5-c
                                                D.
                                                        1-a, 2-b, 3-c, 4-d, 5-e
78.
        Select the incorrect pair
                Caulimovirus – ds DNA
                                                В.
                                                        Tombusvirus – ss RNA
        A.
        C.
                Enamovirus – ssRNA
                                                D.
                                                        Potyvirus – ds RNA
79.
                Cowpea mild mottle virus
       a)
       b)
                Papaya ringspot virus
                                                c)
                                                        Papaya mosaic virus
                Citrus tristeza
                                                        Tomato mosaiv virus
        d)
                                                e)
        Match the following
                Carlavirus group
        1)
                                                2)
                                                        Closterovirus group
        3)
                Potexvirus group
                                                        Potyvirus group
                                                4)
        5)
                Tobamovirus group
        A.
                1-e, 2-d, 3-c, 4-b, 5-a
                                                В.
                                                        1- a, 2- d, 3- c, 4- b, 5- e
                1-a, 2-d, 3-b, 4-c, 5-e
                                                        1-e, 2-d, 3-b, 4-a, 5-c
        C.
                                                D.
80.
        Tobacco leaf curl virus belongs to the group
                                                        Tobravirus
        A.
                Tobamovirus
                                                В.
        C.
                Begomovirus
                                               D.
                                                        Sobemovirus
81.
        Grapevine fan leaf virus, Raspberry ring spot and Tobacco ringspot virus belongs to
                Nepovirus
                                                В.
                                                        Luteovirus
        A.
                Bromovirus
        C.
                                                D.
                                                        Enamovirus
82.
        Clover wound tumor virus and Rice dwarf virus belongs to
                Bromovirus
                                               В.
                                                        Enamovirus
        A.
                Reovirus
                                               D.
                                                        Rhabdovirus
        C.
83.
        Which one of the following has elongated with rounded end (Bacilliform)
                Reovirus
        A.
                                                В.
                                                        Rhabdovirus
        C.
                Tobravirus
                                                D.
                                                        Tobamovirus
```

```
84.
        Which one of the following is the largest plant virus in size
                Potyvirus
                                                 В.
                                                         Comovirus
        A.
                Closterovirus
                                                 D.
                                                         Tombusvirus
        C.
85.
                -ssRNA, Membranous circular particle
        a)
        b)
                +ssRNA, Isometric particle
                ssDNA, Isometric particle
        c)
                +ssRNA, Rigid rod shaped particle
        d)
                -SSRNA, Thin flexous multipartite virus
        e)
                Match the following
                Begomovirus
                                                 2)
                                                         Tobravirus
        1)
                Luteovirus
        3)
                                                 4)
                                                         Tospovirus
                Tenuivirus
        5)
                1-c,2-d,3-b,4-a, 5-e
                                                 В.
        A.
                                                         1-c,2-b,3-a,4-d, 5-e
                1-c,2-a,3-b, 4-e, 5-d
                                                         1-c,2-d, 3-a, 4-b, 5-e
        C.
                                                 D.
86.
       Which of the following viruses is not transmitted by aphids
        A.
                Cauliflower mosaic virus
                                                 В.
        C.
                Rice Tungro bacilliform virus
                                                 D.
                                                                 Cucumber mosaic virus
87.
                Aphids
                                                 b)
                                                         Whitefly
        a)
        c)
                Eriophyid mite
                                                 d)
                                                         Beetles
                Plant hopper
                                                         Thrips
        e)
                                                 f)
        Match the following
                Rice ragged stunt virus (Oryzavirus)
        1)
        2)
                Alfalfa mosaic virus (Alfamovirus)
        3)
                Tomato spotted wilt virus (Tospovirus)
        4)
                Tomato and tobacco leaf curl virus (Begomoviru)
        5)
                Wheat streak mosaic virus (Tritimovirus)
        6)
                Turnip yellow mosaic virus (Tymovirus)
                1- a, 2- b, 3- f, 4- d, 5- e, 6- c
                                                         1- e, 2- a, 3- f, 4- b, 5- c, 6- d
        A.
                                                 В.
                1-e, 2-f, 3-a, 4-c, 5-b, 6-d
                                                         1- a, 2-b, 3- f, 4- c, 5- e, 6- d
        C.
                                                 D.
88.
        TMV consist of how much % of RNA
                5 %
                                                 В.
                                                         7 %
        A.
        C.
                10 %
                                                         20 %
                                                 D.
89.
       Papaya ring spot virus was first reported in
        A.
                Taiwan
                                                 В.
                                                         Mediterranean
        C.
                Sri Lanka
                                                 D.
                                                         India
90.
       Citrus tristeza virus was first introduced in the 1920s in
                Brazil
                                                         India
        A.
                                                 В.
        C.
                                                         Taiwan
                Phillipines
                                                 D.
```

91. Sunflower necrosis disease (SND) was in the state of			portedin the year 1997 in India			
	A. Karnataka	В.	MP			
	C. UP	Б. D.	Maharashtra			
92.	Except the mushroom bacilliform virus,					
94.	A. ssRNA	B.	dsRNA			
	C. ssDNA	D.	dsDNA			
93.	Sterility mosaic was first reported in Ind					
<i>))</i> .	A. Bihar	В.	Karnataka			
	C. UP	D.	Madhya Pradesh			
94.	'Tungro' is a Phillipine word etymologic		·			
<i>)</i> τ.	A. Discolouration	B.	Degenerated growth			
	C. Reduced tiller	D.	Puckering			
95.	Begomoviruses infects	ъ.	1 dekering			
,,,	A. Only monocotyledonous plants	R	Only dicotyledonous plants			
	C. Both a) and b)	D.				
96.	Tobacco yellow dwarf virus is transmit					
,		a o _j _	and micets			
	A. Bemesiatabaci, Dicotyledonou					
	B. Orosiusargentatus, Dicotyledo					
	C. Aphis craccivora, Monocotyle	donous	hosts			
	D. Grafting, Dicotyledonous hosts					
97.	Leaf curl of papaya was first reported b	y Thon	nas in 1939 from Madras and is			
	caused by					
	A. Papaya leaf curl virus	В.	Tobacco leaf curl virus			
	C. Chilli leaf curl virus	D.				
98.	The vector for rice tungro virus is which of the following					
	A. Aphis gossypii	В.	Nephotettixvirescens			
	C. Beetle	D.	All of the above			
99.	Tomato spotted wilt virus belongs to					
	A. Potyvirus	В.	Cosmovirus			
	C. Tospovirus	D.	None of the above			
100.	Telomorphic stage of Blast disease of rice is					
	A. Rhizoctonia solani	B.	Magnaporthe grisea			
	C. Telomorphic cucumeris	D.	Pyriculariaoryzae			
101.	Early blight of potato is caused by					
	A. Phytophthora infestans	B.	Alternaria solani			
	C. Phythophthoracolocasiae	D.	None of the above			
102.	Blister blight of tea is caused by					
	A. Exobasidiumnfestans	B.	Exobasidiumvexans			
	C. Cephaleurusvexans	D.	None of the above			
	Guide book of plant Po	athology	♦ 121			

Anan	norphic stage of Mycospharella	arachid	is is
A.	Cercosporaarachidicola	В.	Cercosporidiumpersonata
C.	Mycospharellaberkeleyii	D.	None of the above
Sigat	oka leaf spots of banana is cause	ed by	
A.	Mycospharellamusicola	$\overset{\circ}{B}$.	Mycospharellafijiensis
C.	Both A and B	D.	None
Caus	al organism of Bacterial blight of	frice	
A.	Xanthomonas oryzae pv. orj		
В.	Xanthomonas oryzae pv. or		
<i>C</i> .	Xanthomonas axonopodis p		
D.	Xanthomonas compestris p		stris
Casua	al organism of Citrus canker	1	
A.	Xanthomonas compestris pv	.compes	tris
В.	Xanthomonas axonopodis p		
C.	Xanthomonas citri pv. phase		
D.	Xanthomonas oryzae pv. or		
Xanth	homonas compestris pv. malvac		the casual organism of
A.	Fire blight of apple	В.	Black rot of crucifers
C.	Citrus canker	D.	Angular leaf spot of cotton
Whic	h of the following bacteria cause	es black	-
A.	Pseudomonas syringae pv.		
B.	Xanthomonas campestris pv	-	
C.	Xanthomonas campestris pv	. campe	stris
D.	Xanthomonas campestris pv	. vesica	toria
Whic	h of the following is a seed born		
A.	Black arm or angular leaf spo	t of cott	on
B.	Bacterial blight of rice		
C.	Grassy shoots of sugarcane		
D.	All of the above		
110.	Black leg of potato is caused	by	
A.			carotovorum
B.	Canditatus liberobacter	-	
C.	Streptomyces scabies	D.	Erwinia amylovora
Fire b	olight of apple is caused by		•
A.	Streptomyces scabies	B.	Erwinia amylovora
C.	Canditatus liberobacter	D.	Clavibacter xyli
Bacte	erial exudates observed for dispe	rsal of b	•
	thomonas oryzae pv. oryzicola		
À.	Tendril like	В.	Bead like
C.	Both A and B	D.	None of the above

113.	Mechanical transmission is present in		
113.	A. Streptomyces scabies	В.	Erwinia amylovora
	C. Canditatus liberobacter	D. D.	Clavibacter xyli
114.	Psyllids is the vector of which bacteria		Ciuviouciei xyti
117.	A. Clavibacter xyli	В.	Canditatus liberobacter
	C. Erwinia amylovora	<i>D</i> . <i>D</i> .	Xanthomonas citri pv. phaseoli
115.	Which of the following is a soil borne d		
115.	A. Soft rot	B.	Black rot of crucifers
	C. Bacterial blight of cotton	D.	
116.	Which of the following is a debris born		•
110.	A. Black rot of crucifers	B.	Soft rot
	C. Bacterial wilts of solanaceous		
	D. Bacterial blight of rice	vegetao	105
117.	Which of the following bacteria causes	Crown	gall of stone fruits?
11/.	A. Streptomyces scabies		Erwinia amylovora
	C. Canditatus liberobacter		Agrobacterium tumefaciens
118.	Which bacteria is associated with Angu		
110.	wheat?	4111a ti iti	to cause Tellow car cockie of
	A. Erwinia tracheiphila	В.	Clavibacter tritici
	C. Xanthomonas citri	Б.	Citivioucies tritter
	D. Xanthomonas campestris pv.c	ramnest	ris
119.	Vector of Citrus canker	compesi	
117.	A. Bee	В.	Wasp
	C. Leaf miner	D.	Aphids
120.	Which bacterial disease enter through s		-
	A. Xanthomonas oryzae pv. oryz		
	B. Streptomyces scabies		
	C. Rhizobium spp.	D.	Clavibacter tritici
121.	Which bacterial disease enter through le	enticels	
	A. Xanthomonas oryzae pv. oryz		
	B. Rhizobium spp.		
	C. Clavibacter tritici	D.	Streptomyces scabies
122.	Casual organism of Common blight of l	bean	
	A. Xanthomonas campestris pv.		li
	B. Clavibacter tritici	•	
	C. Xanthomonas citri		
	D. Xanthomonas campestris pv.	campes	tris
123.	Casual organism of Bacterial blight of		
	A. Xanthomonas campestris pv.		
	B. Xanthomonas axonopodis pv.		

C.	Clavibacter tritici					
D.	Xanthomonas citri					
124.	Casual organism of Halo blight of bean					
A.	Pseudomonas syringae pv. phas	seolicola				
<i>B</i> .	Xanthomonas campestris pv. ph	aseoli				
<i>C</i> .	Xanthomonas axonopodis pv. p	unicae				
D.	Clavibacter tritici					
125.	Fire blight of apple and pears was	discovered	by			
	A. Robert Koch	В.	T.J Burrill			
	C. J.C Arthur	D.	All of the above			
126.	Closteroviridae are transmitted by	/-				
	A) Aphids	B)	Whiteflies			
	C) Mealy bugs	D)	All of them			
127.	Ilarvirus is transmitted by					
	A) Pollen	B)	Seed			
	C) Thrips	D)	All of them			
128.	Waikavirus is transmitted by-					
	A) Leafhoppers	B)	Aphids			
	C) Thrips	D)	Both (A) and (B)			
129.	Reoviridae are transmitted by-					
	A) Leafhoppers	B)	Plant hoppers			
	C) Both(A) and (B)	D)	Aphids			
130.	Geminiviridae are transmitted by-					
	A) Leafhoppers	B)	Whiteflies			
	C) Plant hoppers	D)	All of them			
131.	Viruses in the genera Nanovirus a	and Babuviru	is are transmitted by-			
	A) Aphids	B)	Whiteflies			
	C) Leafhoppers	D)	None of them			
132.	Which of the following are/is tran	smitted by th	rips			
	A) Tomato spotted wilt virus	B)	Tobacco streak virus			
	C) Tomato bushy stunt virus	D)	Both (A) and (B)			
133.	Which of the following is/are tran	smitted by N	lematode-			
	A) Tobacco rattle virus	B)	Tobacco ring spot virus			
	C) Carnation ring spot virus	D)	All of these			
134.	Which of the following is/are tran	smitted by fu	ingi-			
	A) Tobacco necrosis virus	B)	Potato mop-top virus			
	C) Both (A) and (B)	D)	Barley stripe mosaic virus			
135.	Which of the following is not a se					
	A) Tobacco streak virus	B)	Tobacco rattle virus			
	C) Maize streak virus	D)	Cowpea mosaic virus			

136.	Tobacco mosaic virus is transmitted through					
	A)	Seed	B)	Contact		
	C)	Both A and B	D)	None of the above		
137.	Whic	h of the following is/are aphid t	ransmitted	d		
	A)	Cucumber mosaic virus	B)	Banana bunchy top virus		
	C)	Cauliflower mosaic virus	D)	All of them		
138.	Whic	h of the following is/are Whitef	fly transmi	tted		
	A)	Tomato leaf curl virus	B)	Sweet potato mild mottle virus		
	C)	Both A and B	D)	None of the above		
139.	Whea	at streak mosaic virus is transm	itted by-			
	A)	Eriophyid mites	В)	Aphids		
	C)	Whiteflies	D)	None of the above		
140.	Potate	o virus X is transmitted by-	ĺ			
	A)	Contact	B)	Aphid		
	C)	Thrips	D)	All of the above		
141.	Cowp	pea mosaic virus is transmitted				
	A) Î	Beetle	B)	Seed		
	C)	Both A and B	D)	None of the above		
142.	Rice 1	tungro bacilliform virus is/are t	ransmitted	l by-		
	A)	Seed	B)	Mealy bug		
	C)	Leafhoppers	D)	None of the above		
143.	Rice	ragged stunt virus is transmitte	d by-			
	A)	Planthoppers	B)	Thrips		
	C)	Aphids	D)	Whitefly		
144.		e streak virus is transmitted by	,	Ž		
	A)	Thrips	B)	Aphids		
	C)	Whitefly	D)	Leafhopper		
145.	Barle	y yellow mosaic virus is transn	nitted by	••		
	A)	Aphids	B)	Whitefly		
	C)	Leafhopper	D)	Fungi		
146.	Whic		ne leaves b	ecomes small and closely placed to		
		rosette like structures?		• •		
	A)	Little leaf of brinjal				
	B)	Bunchy top of banana				
	C)	Mosaic of cucurbits				
	D)	Leaf curl of tomato				
147.		evine fan leaf virus is transmitt	ed by			
	A)	Olpidium brassicae	B)	Xiphinema index		
	Ć)	Nephotettix apicalis	Ď)	Bemisia tabaci		

148.	Tobacco mosaic virus is transmitted by						
	A) Contact + Fungi	B)	Whitefly				
	C) Leaf hopper	D)	Aphid				
149.	Give an example of insect vector which	,	•				
	transmission						
	A) Aphid	B)	Leaf Hopper				
	C) Thrips	D)	Mites				
150.	Example of viroid disease of plant						
	A) Chrysanthemum stunt	B)	Citrus trsteza				
	C) Bunchy top of banana	D)	Potato virus X				
151.	Example of Pecluviruses group						
	A) TMV	B)	Wheat mosaic virus				
	C) Peanut clump virus	D)	Potato virus X				
152.	Which group of virus is transmitted by	soil bor	ne protozoa belonging to the genus				
	Polymyxa						
	A) Carlavirus	B)	Potexvirus				
	C) Furovirus	D)	Tobravirus				
153.	Family Closteroviridae is transmitted by						
	A) Aphids	B)	Mealy bugs				
	C) Whiteflies	D)	All of them				
154.	CTV is transmitted by						
	A) Toxoptera citricida	B)	Aphis gossypii				
	C) Budding and grafting	D)	All of the above				
155.	Which of the following is an ssRNA virus						
	A) Cauliflower mosaic virus	B)	Turnip yellow mosaic virus				
	C) Rice tungro spherical virus	D)	Both b and c				
156.	Potato leaf rollvirus belongs to which group of viruses						
	A) Polerovirus	B)	Luteovirus				
	C) Fabavirus	D)	Ilarvirus				
157.	The pathogen of Sunflower necrosis disease is antigenically associated with						
	which virus						
	A) Tobacco streak virus	B)	TMV				
	C) Tobacco rattle virus	D)	None of the above				
158.	Which of the following is an example o	f dsRN.	A virus				
	A) Luteoviridae	B)	Comoviridae				
	C) Reoviridae	Ď)	Bromoviridae				
159.	Example of Fijivirus						
	A) Maize rough dwarf virus	B)	Pagola stunt virus				
	C) Rice black streak dwarf virus	ď	All of the above				

Examp	le of negative sense ssRNA virus	S			
A)	Strawberry crinkle virus	B)	Wound tumor virus		
C)	Tomato ringspot virus	D)	Potato leaf curl virus		
Genome of Tomato spotted wilt virus					
A)	-ssRNA	B)	+ssRNA		
C)	-dsRNA	D)	+dsRNA		
The cha	aracteristic symptom of sterility r	nosaic v	irus is		
A)	Stunted and pale brown appeara	ance of p	plant		
B)	Bushy and pale green appearance	e of plar	nt and drastic reduction in leaf size		
C)	Leaf curl and mosaic appearance	ce			
D)	Yellow halo surrounded by blea	ck spot			
Banana bunchy top disease was first described in 1889 in					
A)	India	B)	Mediterranean		
C)	Sri Lanka	D)	Fiji		
Sterility mosaic was first reported in India in 1932 in the state of					
A)	UP	B) Kar	nataka		
C)	Bihar	D)Mad	hya Pradesh		
hich one	of the following is the largest pla	nt virus	in size		
A)	Potyvirus	B)	Comovirus		
C)	Closterovirus	D)	Tombusvirus		
	A) C) Genom A) C) The cha A) B) C) Banana A) C) Sterility A) C) hich one A)	A) Strawberry crinkle virus C) Tomato ringspot virus Genome of Tomato spotted wilt virus A) -ssRNA C) -dsRNA The characteristic symptom of sterility r A) Stunted and pale brown appeara B) Bushy and pale green appearance C) Leaf curl and mosaic appearance D) Yellow halo surrounded by blea Banana bunchy top disease was first des A) India C) Sri Lanka Sterility mosaic was first reported in Indi A) UP C) Bihar hich one of the following is the largest plat A) Potyvirus	C) Tomato ringspot virus D) Genome of Tomato spotted wilt virus A) -ssRNA B) C) -dsRNA D) The characteristic symptom of sterility mosaic v A) Stunted and pale brown appearance of plan B) Bushy and pale green appearance of plan C) Leaf curl and mosaic appearance D) Yellow halo surrounded by bleack spot Banana bunchy top disease was first described i A) India B) C) Sri Lanka D) Sterility mosaic was first reported in India in 193 A) UP B) Kar C) Bihar D)Mad hich one of the following is the largest plant virus A) Potyvirus B)		

7 ANSWERS: DISEASES OF CROP PLANTS

- 1. (Ans: C;Phakospora, Source: An Introduction to Fungi HC Dube, Ch -14, page no 281-298)
- 2. (Ans: A; Rose, Source: An Introduction to Fungi HC Dube, Ch -14, page no 281-298)
- 3. (Ans: A; Rust fungi, Source: An Introduction to Fungi HC Dube, Ch -14, page no 281-298)
- 4. (Ans: C; *Phytophthora ramorum*, Source: An Introduction to Fungi HC Dube, Ch -20, page no 417)
- 5. (Ans: A; *Peronospora destructor*, Source: An Introduction to Fungi HC Dube, CH -20, page no 421)
- 6. (Ans: B; *Peronospora parasitica*, Source: An Introduction to Fungi HC Dube, Ch -20, page no 421)
- 7. (Ans: B; Late blight disease, Source: An Introduction to Fungi HC Dube, Ch -20, page no 419)
- 8. (Ans: B; Fungi, Source: An Introduction to Fungi HC Dube, Ch 10, page no 153)
- 9. (Ans: D; Podosphaera, Source: An Introduction to Fungi HC Dube, Ch -12, page no 217)
- 10. (Ans: D; Podosphaera, Source: An Introduction to Fungi HC Dube, Ch -12, page no 217)
- 11. (Ans: C; Ergot of sorghum, Source: An Introduction to Fungi HC Dube, Ch -13, page no 272)
- 12. (Ans: C, Barberry, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:10)
- 13. (Ans: B, Thirumalachar, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:11)
- 14. (Ans: C, *Rhizopus stolonifer*, Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 34)
- 15. (Ans: D, Brewing, Baking and for making probiotic, Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 48)
- 16. (Ans: C, *Verticillium theobromae*, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 234)
- 17. (Ans: B, *Phytophthora fragariae*, Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 128)
- 18. (Ans: A, Rice blast, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 143)

Guide book of plant Pathology ♦ 128

- 19. (Ans: B, *Bipolaris oryzae*, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:135)
- 20. (Ans: B, BLB, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:298)
- 21. (Ans: B, MERYBLYT and COUGARBLIGHT, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:303)
- 22. (Ans: B, *Leifsonia xyli* subsp. *Xyli*, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:299)
- 23. (Ans: A, *Ceratocystis paradoxa*, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 138)
- 24. (Ans: A, Sulphur toxicity, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:369)
- 25. (Ans: A, Mn, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:369)
- 26. (Ans: C, *Fusarium*, Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 589
- 27. (Ans: A, Holo root parasite, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 363)
- 28. (Ans: D, Autotroph, Source: Fungi, Bacteria and viruses, H. C. Dube, Page: 4)
- 29. (Ans: A, Ostiole, Source: An introduction to Mycology, K.R. Aneja and R. S. Mehrotra, Page: 166)
- 30. (Ans: D, Darjeeling, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page:10)
- 31. (Ans: A, *Tolyposporium penicilliariae*, Source: Fundamentals of Plant Pathology, D. Alice, C. Jeyalakshmi, Page: 272)
- 32. (Ans: A, Quarantine, Source: Principle of Plant Pathology, RS Singh, Page No. 301)
- 33. (Ans: C, Reducing the quantity of yield, Source: Principle of Plant Pathology, RS Singh, Page No. 50)
- 34. (Ans: A, Albinism, Source: Principle of Plant Pathology, RS Singh, Page No. 42)
- 35. (Ans: B, Hyperplasia, Source: Principle of Plant Pathology, RS Singh, Page No. 42)
- 36. (Ans: B, *Anguina tritici*, Source: Plant Pathology, GN Agrios, Page No: 866)
- 37. (Ans: D, Increase the flowering period, Source: Principle of Plant Pathology, RS Singh, Page No. 50)
- 38. (Ans: A, *Meloidogyne incognita*, Source: Plant Pathology, GN Agrios, Page No: 24)
- 39. (Ans: B, Fusarium udum, Source: Plant Pathology, GN Agrios, Page No: 24)
- 40. (Ans: A) Albugo
- 41. (Ans: C) Peronospora
- 42. (Ans: D, Synchytrium endobioticum, Source: Plant Pathology, GN Agrios)

- 43. (Ans: B, Polyporus, Source: Plant Pathology, GN Agrios, Page No: 606)
- 44. (Ans: C, Soil borne, Source: Plant Pathology, GN Agrios, Page No: 386)
- 45. (Ans: A, Zn, Source: Plant Pathology, GN Agrios, Page No: 373)
- 46. (Ans: C, 30-32°C)
- 47. (Ans: D, Red rot of sugarcane- *Colletotrichum gleosporoides*, Source: Plant Pathology, GN Agrios, Page No: 203)
- 48. (Ans: B, Basidiomycotina, Source: Plant Pathology, GN Agrios, Page No: 282)
- 49. (Ans: A, Systemic infection, Source: Principle of Plant Pathology, RS Singh, Page No. 11)
- 50. (Ans: B, *Rhizobacter daucus*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71)
- 51. (Ans: D, all of the above, Source: Plant Bacteriology by Kalyan K. Mondal Page No-73)
- 52. (Ans: C, *Erwinia carotovora*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71)
- 53. (Ans: A, *Pseudomonas andropogonis*, Source: Plant Bacteriology by Kalyan K.Mondal Page No-71)
- 54. (Ans: D, All of the above, Source: Plant Bacteriology by Kalyan K. Mondal Page N
- 55. (Ans: A, *Pseudomonas syringae* pv. *persicae*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-74)
- 56. (Ans: D, *Xanthomonas campestris* pv. *Campestris*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71)
- 57. (Ans: C, Margin of canker, Source: Plant Bacteriology by Kalyan K. Mondal Page No-77)
- 58. (Ans: B, Black arm, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71)
- 59. (Ans: C, Both A and B, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71)
- 60. (Ans: A, 1, Source: Plant Bacteriology by Kalyan K. Mondal Page No-119)
- 61. (Ans: D, All, Source: Plant Bacteriology by Kalyan K. Mondal Page No-120)
- 62. (Ans: B, Patel *et al.*, 1948, Source: Plant Bacteriology by Kalyan K. Mondal Page No-117)
- 63. (Ans: D, All, Source: Plant Bacteriology by Kalyan K. Mondal Page No-116)
- 64. (Ans: D, None, Source: Plant Bacteriology by Kalyan K. Mondal Page No-114)
- 65. (Ans: A, Kerela, Source: Elements of plant virology, Page 161)
- 66. (Ans: A, Bacterial blight of pomegranate, Source: Plant Bacteriology by Kalyan K. Mondal Page No-116)
- 67. (Ans: C, Yellow, Source: Plant Bacteriology by Kalyan K. Mondal Page No-115)
- 68. (Ans: A, Bacterial blight, Source: Plant Bacteriology by Kalyan K. Mondal Page No-115)
- 69. (Ans: C, Cotton, Source: Plant Bacteriology by Kalyan K. Mondal Page No-120)

- 70. (Ans: C, Fiji, Source: Elements of plant virology, Page–10)
- 71. (Ans: D, Phytoplasma- Prusiner, Source: Elements of plant virology, Pg 27)
- 72. (Ans: C, 1-b, 2-c, 3-a, 4-d, Source: Elements of plant virology, Pg 32)
- 73. (Ans: C, Puckering-Pouch like development of green parts of leaves, Source: Elements of plant virology, Pg 32-34)
- 74. (Ans: A, Epinasty, Source: Elements of plant virology, Page 36)
- 75. (Ans: C, Potato mop top virus, Source: Elements of plant virology, Page 60)
- 76. (Ans: B, 0.5-2%, Source: Elements of plant virology, Page 63)
- 77. (Ans: A, 1-a, 2-e, 3-d, 4-c, 5-b, Source: Elements of plant virology, Page 124)
- 78. (Ans: D, Potyvirus-dsRNA, Source: Elements of plant virology, Page 124)
- 79. (Ans: B, 1-a, 2-d, 3-c, 4-b, 5-e, Source: Elements of plant virology, Page 125-126)
- 80. (Ans: C, Begomovirus, Source: Elements of plant virology, Page 134)
- 81. (Ans: A, Nepovirus, Source: Elements of plant virology, Page 124)
- 82. (Ans: C, Reovirus, Source: Elements of plant virology, Page 126)
- 83. (Ans: B, Rhabdovirus, Source: Elements of plant virology, Page 130)
- 84. (Ans: C, Closterovirus, Source: Elements of plant virology, Page 130)
- 85. (Ans: A, 1-c, 2-d, 3-b, 4-a, 5-e, Source: Elements of plant virology, Page 130-134)
- 86. (Ans: C, Rice Tungro bacilliform virus, Source: Elements of plant virology, Page 130-134)
- 87. (Ans: B, 1-e, 2-a, 3-f, 4-b, 5-c, 6-d, Source: Elements of plant virology, Page 130-134)
- 88. (Ans: A, 5%, Source: G.N.Agrios, Page 757)
- 89. (Ans: A, Taiwan, Source: Elements of plant virology, Page 212)
- 90. (Ans:A, Brazil, Source: Elements of plant virology, Page 212)
- 91. (Ans: A, Karnataka, Source: Elements of plant virology, Page 151)
- 92. (Ans: B, dsRNA, Source: Elements of plant virology, Page 154)
- 93. (Ans: A, Bihar, Source: Elements of plant virology, Page 156)
- 94. (Ans: B, Degenerated growth, Source: Elements of plant virology, Page 158)
- 95. (Ans: B, Only dicotyledonous plants, Source: Elements of plant virology, Page 158)
- 96. (Ans: B, *Orosius argentatus*, Dicotyledonous hosts, Source: Elements of plant virology, Page 159)
- 97. (Ans: B, Tobacco Leaf Curl Virus, Source: Elements of plant virology, Page 160)
- 98. (Ans: B, *Nephotettix virescens*, Source: Modern plant pathology by H.C Dube pg.no 349)
- 99. (Ans: C, Tospovirus, Source: Modern plant pathology by H.C Dube pg.no 351)
- 100. (Ans: B, *Magnaporthe grisea*, Source: Modern plant pathology by H.C Dube pg.no 298).

- 101. (Ans: B, *Alternaria solani*, Source: Modern plant pathology by H.C Dube pg.no 313).
- 102. (Ans: B, *Exobasidium vexans*, Source: Modern plant pathology by H.C Dube pg.no 326).
- 103. (Ans: A, *Cercospora arachidicola*, Source: Modern plant pathology by H.C Dube pg.no 328)
- 104. (Ans: C, Both A and B, Source: Modern plant pathology by H.C Dube pg.no 331)
- 105. Ans:A. *Xanthomonas oryzae* pv. *Oryzae*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 106. Ans:B. *Xanthomonas axonopodis* pv.c*itri*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 107. Ans:D. Angular leaf spot of cotton, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 108. Ans:C. *Xanthomonas campestris* pv. c*ampestris*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 109. Ans:D. All of the above, Source: Plant Bacteriology by Kalyan K. Mondal Page No-73
- 110. Ans:A. *Pectobacterium carotovorum* subsp. *carotovorum*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-74
- 111. Ans: B. *Erwinia amylovora*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 112. Ans: C. Both A and B, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 113. Ans: D. *Clavibacter xyli*, Source: A competitive book of agriculture by Nemraj Sunda Page No-305
- 114. Ans: B. *Canditatus liberobacter*, Source: A competitive book of agriculture by Nemraj Sunda Page No-304
- 115. Ans: A. Soft Rot, Source: Plant Bacteriology by Kalyan K. Mondal Page No-77
- 116. Ans: D. Bacterial Blight of Rice, Source: Plant Bacteriology by Kalyan K. Mondal Page No-77
- 117. Ans: D. *Agrobacterium tumefaciens*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 118. Ans: B. *Clavibacter tritici*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-74
- 119. Ans: C. Leaf miner, Source: Plant Bacteriology by Kalyan K. Mondal Page No-73
- 120. Ans: A. *Xanthomonas oryzae* pv. *oryzicola*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71
- 121. Ans: D. *Streptomyces scabies*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-71

- 122. Ans: A. *Xanthomonas campestris* pv. *phaseoli*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-78
- 123. Ans: B. *Xanthomonas axonopodis* pv. *punicae*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-78
- 124. Ans: A. *Pseudomonas syringae* pv. *phaseolicola*, Source: Plant Bacteriology by Kalyan K. Mondal Page No-74
- 125. Ans: B. T.J Burrill, Source: Modern plant pathology by H.C Dube pg.no 336
- 126. (Ans: D. All of them, Source: The elements of Plant Virology by Kolte and Tewari, Page No-131)
- 127. (Ans: D. All of them, Source: The elements of Plant Virology by Kolte and Tewari, Page No-132)
- 128. (Ans: D. Both A and B, Source: The elements of Plant Virology by Kolte and Tewari, Page No-132)
- 129. (Ans: C. Both A and B, Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 130. (Ans: D. All of them, Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 131. (Ans: A. Aphids, Source: The elements of Plant Virology by Kolte and Tewari, Page No-134)
- 132. (Ans: D. Both A and B, Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 133. (Ans: D. All of them, Source: The elements of Plant Virology by Kolte and Tewari, Page No-130-132)
- 134. (Ans: C. Both A and B, Source: The elements of Plant Virology by Kolte and Tewari, Page No-130)
- 135. (Ans: C. Maize streak virus, Source: The elements of Plant Virology by Kolte and Tewari, Page No-130)
- 136. (Ans: C. Both A and B, Source: The elements of Plant Virology by Kolte and Tewari, Page No-130)
- 137. (Ans: D. All of them, Source: The elements of Plant Virology by Kolte and Tewari, Page No-130-134)
- 138. (Ans: C. Both A and B,Source: The elements of Plant Virology by Kolte and Tewari, Page No-133-134)
- 139. (Ans: A. Eriophyid mites, Source: The elements of Plant Virology by Kolte and Tewari, Page No-131)
- 140. (Ans: A. Contact, Source: The elements of Plant Virology by Kolte and Tewari, Page No-131)
- 141. (Ans: C. Both A and B, Source: The elements of Plant Virology by Kolte and Tewari, Page No-132)
- 142. (Ans: C. Leafhoppers, Source: The elements of Plant Virology by Kolte and Tewari, Page No-134)

- 143. (Ans: A. Planthoppers, Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 144. (Ans: D. Leafhopper, Source: The elements of Plant Virology by Kolte and Tewari, Page No-133)
- 145. (Ans: D. Fungi, Source: The elements of Plant Virology by Kolte and Tewari, Page No-131)
- 146. Ans: A. Little leaf of brinjal Source: Fungi, Bacteria and viruses by HC Dube, Pg: 254
- 147. Ans: B. *Xiphinema index*, Source: Fungi, Bacteria and viruses by HC Dube, Pg: 256
- 148. Ans: A. Contact + Fungi, Source: Fungi, Bacteria and viruses by HC Dube, Pg: 256
- 149. Ans: B. Leaf hopper, Source: Fungi, Bacteria and viruses by HC Dube, Pg:256
- 150. Ans: A. Chrysanthemum stunt, Source: Fungi, Bacteria and viruses by HC Dube, Pg:256
- 151. Ans: C. Peanut clump virus, Source: Elements of plant virology, pg: 139
- 152. Ans: C. Furovirus, Source: Elements of plant virology, pg: 139
- 153. Ans: D. All of them, Source: Elements of plant virology, pg: 144
- 154. Ans: D. All of them, Source: Elements of plant virology, pg: 144
- 155. Ans: D. Both B and C, Source: Elements of plant virology, pg: 145
- 156. Ans: B. Luteovirus, Source: Elements of plant virology, pg: 147
- 157. Ans: A. Tobacco streak virus, Source: Elements of plant virology, pg: 151
- 158. Ans: C. Reoviridae, Source: Elements of plant virology, pg: 152
- 159. Ans: D. All of them, Source: Elements of plant virology, pg: 153
- 160. Ans: A. Strawberry crinkle virus, Source: Elements of plant virology, pg: 154
- 161. Ans: A. –ssRNA, Source: Elements of plant virology, pg: 155
- 162. Ans: B. Bushy and pale green appearance of plant and drastic reduction in leaf size, Source: Elements of plant virology, pg: 156
- 163. Ans: D. Fiji, Source: Elements of plant virology, Page 10
- 164. Ans: C. Bihar, Source: Elements of plant virology, Page 156
- 165. Ans: C. Closterovirus, Source: Elements of plant virology, Page 130

CHAPTER 8 FUNGICIDES AND CHEMICAL CONTROL OF PLANT DISEASES

1.	Whic	Which of the following is an acetamide fungicide					
	A.	Metalaxyl	В.	Furalaxyl			
	C.	Biloxazol	D.	Curzate			
2.		is particularly effective a	against d	eep seated basidiomycetes infecting			
	seeds	s such as loose smut of wheat & ba	arley an	d as such is the first truly synthetic			
	syste	mic to be used in agriculture as a	seed da	resser for smuts			
	A.	Benomyl	В.	Carbendazim			
	C.	Carboxin	D.	Oxycarboxin			
3.	Whic	th of the following is/are a first ge	eneration	n fungicide(s)			
	A.	Sulphur	В.	Copper			
	C.	Mercury	D.	All of them			
4.	The o	discovery of	aroun	d 1934 marked beginning of the			
	devel	opment of highly effective and spe	ecific se	cond generation fungicides that are			
	orgar	nic in nature					
	A.	Thalimides	В.	Acetamides			
	C.	Dithiocarbamates	D.	All of them			
	E.						
5.		are also termed as systemic fungicides and possess direct and					
	indire	indirect activity on the pathogen					
	A.	First generation compounds	В.	Second generation compounds			
	C.	Third generation compounds	D.	All of them			
6.	Beno	myl is chemically					
	A.	A. Methyl-1-(butyl carbamoyl)-2-benzimidazole carbamate					
	В.	Methyl-2-(butyl carbamoyl)-2-	benzimi	idazole carbamate			
	C.	Methyl-1-(butyl carbamoyl)-1-	benzimi	idazole carbamate			
	D.	Methyl-2-(butyl carbamoyl)-1-	benzimi	idazole carbamate			
7.		are converted to an active fungitoxicant Methyl Benzimidazole					
	Carb	amate (MBC) before reaching the	ir site o	f action in the fungal cells			
	A.	Benomyl	В.	Thiophanate-methyl			
	C.	Both of them	D.	None of them			

8.	Mepr	onil is sold with the name					
	Α.	Plantvax	B.	Calirus			
	C.	Basitac	D.	Moncut			
9.	Whic	ch of the following is a Sterol Inhi	biting Fu	ngicide (SBI)			
	A.	Triazoles	В.	Morpholines			
	C.	Pyrimidines	D.	All of the above			
10.		interferes with the activ	vity of R	NA Polymerase I			
	A.	Carbamates	В.	Phenylamides			
	C.	Acylalanins	D.	None of them			
11.		acts synergistically with	th Metala	axyl			
	A.	Fosetyl Al	В.	Furalaxyl			
	C.	Cymoxanil	D.	Curzate			
12.	Chlo	ranil (quinone derivatives) has	now beer	replaced by			
	A.	Diazoben	В.	Dichlone			
	C.	Dichloran	D.	None			
13.	Carb	oxin and Oxycarboxin was first i	introduce	d in the year			
	A.	1964	В.	1965			
	C.	1966	D.	1967			
14.	The f	The first Ethylene-bis-Dithiocarbamates (EBDC) to be developed was					
	A.	Nabam	В.	Zineb			
	C.	Maneb	D.	Mancozeb			
15.	Chlo	rothalonil is sold as					
	A.	Daconil	В.	Bravo			
	C.	Termil	D.	All of them			
16.	Chen	notherapeutic fungicides are	fu	ingicides that are somewhat mobile			
	in the	plant					
	A.	Contact	В.	Systemic			
	C.	Both	D.	None			
17.	were the first synthetic site specific fungicides						
	A.	Benzimidazoles	В.	Strobilurins			
	C.	Sterol Biosynthesis Inhibitors	(SBIs)				
	D.	Phenylamides					
18.	When	n a fungus develops resistance ag	gainst one	e member of a fungicide group, it			
	automatically becomes resistant to rest of the fungicides of that group. This type of						
	resist	ance is called as					
	A.	Cross resistance	В.	Positive cross resistance			
	C.	Negative cross resistance	D.	Multiple resistance			
19.	Azox	systrobin moves	in the	plant			
	A.	Translaminarly	В.	Systemically			
	C.	Both translaminarly and syste	mically				
	D.	Neither way					
		Guide book of plant	Pathology	· ♦ 136			

		was the first enantio	mer fung	gicide introduced in 1977		
	A.	Curzate	B.	Metalaxyl M		
	C.	Cymoxanil	D.	None		
	What is	s the composition of Bordeaux n	nixture?			
	A.	Copper sulphate: Lime: Water (
	В.	Copper sulphate: Lime: Water(
	C.	Copper carbonate: Lime: Water)		
	D.	None of the above				
What is the composition of Burgandy mixture?						
	A.	Copper sulphate (1.8 kg): Sodi		onate (2.3 kg): Water (227 L)		
B. Copper sulphate (1.8 kg): Sodium chloride (2.3 kg): Water (227 L)						
	C.			earbonate (2.3 kg): Water (227 L		
	D.	None of the above				
	Which	of the following is inorganic fung	gicide?			
	A.	Boric acid	В.	Bleaching powder		
	C.	Potassium iodide	D.	All the above		
	Which	of the following belong to monoa	ılkvldithi			
	A.	Maneb	B.	Zineb		
	C.	Nabam	D.	All the above		
		of the following belong to dialky				
	Α.	Thiram	В.	Febam		
	C.	Zeram	D.	All the above		
		of the following fungicide is effe	ective ag			
	A.	Dinocarp	B.	Binapacryl		
	C.	Both A and B	D.	None		
		s the mode of action of aromatic				
		rne diseases?	3			
	A.	Uncouple oxidative phosphoryla	ation			
	В.	Cause membrane dysfunction i				
	C.	Inhibit adenosine deaminase				
	D.	Inhibit r RNA synthesis				
		s the mode of action of Oxathiin	s against	smuts and rusts?		
	A.					
	В.	Inhibit succinate dehydrogenase activity and disrupt respiration Cause membrane dysfunction in fungi				
	C.	Inhibit adenosine deaminase				
	D.	Inhibit r RNA synthesis				
J		e mode of action of Benzimidazo	des?			
	A.	Inhibit succinate dehydrogenas		and disrupt respiration		
	В.	Cause membrane dysfunction i	-	and disrapt respiration		
	C.	Inhibit r RNA synthesis				
	D.	Inhibit fungal mitosis by interfe	ring with	spindle formation		
	ν.	Guide book of plant Po				

30.	Which	of the following fungicide group i	s highly	effective against powdery mildews?		
	A.	Hydroxypyrimidines	B.	Oxathiins		
	C.	Dinocarp	D.	Phenylamides		
31.	What is the mode of action of Phenylamides?					
	A.	Cause membrane dysfunction in	n fungi			
	В.	Inhibit rRNA synthesis				
	C.	Inhibit fungal mitosis by interfer		spindle formation		
	D.	Inhibit DNA and cell wall synth	nesis			
32.	Which of the following group of fungicide is effective against oomycetes?					
	A.	Phenylamides	B.	Isoxazoles		
	C.	Sterol Biosynthesis Inhibitors	D.	Both A and B		
33.	What i	s the mode of action of Sterol Bio	osynthes	sis Inhibitors against Blast of rice?		
	A.	Inhibit melanin biosynthesis				
	В.	Cause membrane dysfunction in	n fungi			
	C.	Inhibit rRNA synthesis				
	D.	Inhibit fungal mitosis by interfer	ring with	spindle formation		
34.	What i	s the mode of action of Strobiluri	ins agair	nst fungi and oomycetes?		
	A. Block electron transport at quinol (Qo) site of oxidation and inhibit ATP					
	synthesis					
	В.	Inhibit melanin biosynthesis				
	C.	Cause membrane dysfunction in	n fungi			
	D.	Inhibit rRNA synthesis				
35.	What is the mode of action of Phenylpyrroles?					
	A.	Inhibit glucose phosphorylation				
	В.	Inhibit melanin biosynthesis				
	C.	Cause membrane dysfunction in fungi				
	D. Inhibit rRNA synthesis					
36.	Bordea	aux mixture was first used to con	trol-			
	A.	Downy mildew of grape vine	В.	Powdery mildew of pea		
	C.	Root rot of beet	D.	None		
37.	Select	t the systemic fungicides-				
	A.	Triazoles	B.	Pyrimidines		
	C.	Metalaxyl	D.	All of these		
38.	Which is most recent widely used fungicide for control of powdery mildew?					
	A.	Calaxin	B.	Sulphur dust		
	C.	Apron-SD-35	D.	Dithan M-45		
39.	System	nic organic compounds are effect	ive chen	nicals for controlling-		
	A.	Internally seed born disease	B.	Externally seed borne disease		
	C.	Soil borne disease	D.	Both A and B		

40.	Example of	system organic compound-		
	A.	Plantvax	B.	Vitavax
	C.	Benlate	D.	All of these
41.	Select 1	the common copper fungicide-		
	A.	Blitox	B.	Perenox
	C.	Captn	D.	Both A and B
42.	Loose	smut of wheat can be controlled b	y applic	ation of-
	A.	Carboxin @2.5g/kg of seed		
	B.	Copper oxychloride @2g/kg of s	seed	
	C.	Carbendazim @1g/kg of seed		
	D.	All of these		
43.	Most w	ridely used fungicide for control of	of smut is	S-
	A.	Plantvax	B.	Vitavax
	C.	Metalaxyl	D.	All of these
44.	Most w	ridely used fungicide for control of	of rust is-	-
	A.	Plantvax	B.	Vitavax
	C.	Benlate	D.	Bavistin
45.	Sulphu	r dust is used to control-		
	A.	Powdery mildew	B.	Downy mildew
	C.	Rust		
46.	Burgur	dy mixture was discovered by-		
	A.	Mason, 1887	B.	P. M. A. Millardet, 1885
	C.	Prevost 1807	D.	V B Singh, 1942
47.	Chaubatt	ia paste is a combination of copp	er carbo	nate, red lead and
	A.	Sodium carbonate	B.	Copper sulphate
	C.	Raw linseed oil	D.	All of these
48.	Select t	he Dithiocarbamate fungicide:		
	A.	Thiram	B.	Zineb
	C.	Mancozeb	D.	All of these
49.	Select 1	the fungicide which also act as ne	maticide	e and herbicide-
	A.	Zineb	B.	Maneb
	C.	Mancozeb	D.	Vapam
50.	Who di	scovered the first systemic fungion	cide?	
	A.	Von Schmeling and Kulka, 1966	B.	PMA Millardet, 1885
	C.	V. B. Singh, 1942	D.	None
51.	Trade 1	name of carboxin is-		
	A.	Vitavax	B.	Plantvax
	C.	Copper oxychloride	D.	Zineb

52.	_		require s	specific action between the chemical	
	inhibit	or and fungal target site			
	A.	Benzimidazoles and Strobulin		-	
	В.	Benzimidazoles and Sterol dem	-		
	C.	Sterol demethylation inhibitors	and Stro	bulin related fungicides	
	D.	All of the above			
53.	Lime is	Lime is added to the active chemical of fungicides as a			
	A.	Sticker	В.	Surfactant	
	C.	Safener	D.	All of the above	
54.	Systemic f	ungicides were 1st available fro	om the y	ear	
	A.	1970	В.	2005	
	C.	2000	D.	1880	
55.	Permai	nent Tree wound dressing is don	ne with		
	A.	10:2:2 mixture of lanoline, rosi			
	B.	2:10:2 mixture of lanoline, rosi	n, gum		
	C.	2:2:10 mixture of lanoline, rosi	-		
	D.	1:2:2 mixture of lanoline, rosin	, gum		
56.	Chemi	cals widely used for post harves	st contro	l of diseases	
	A.	Benomyl and captan			
	B.	Sulfur dioxide and elemental s	ılfur		
	C.	Benzoic acid and thiabendazol	e		
	D.	All of the above			
57.	The Bo	ordeaux mixture, is named after			
	A.	The person who discovered it			
	В.	The chemical used in the mixt	ure		
	C.	The region where it was disco	vered		
	D.	The disease it was used against	st for the	e first time	
58.	The fir	st inorganic fungicide develope	d was		
	A.	Sulfur fungicide	В.	Copper fungicide	
	C.	Carbonate fungicide	D.	Phosphonate fungicide	
59.	Chemi	cal compounds that act as plant	defense	activators in host are	
	A.	Salicyclic acid	B.	Isonicotinic acid	
	C.	Phenolic acid	D.	All of the above	
60.	The ph	ytotoxicity of Bordeaux mixtur	e can be	reduced by	
	A.	Increasing the ratio of hydrate	d lime to	o copper sulfate	
	В.	Increasing the ratio of copper	sulfate to	ohydrated lime	
	C.	Decreasing the ratio of hydrat	ed lime t	to copper sulfate	
	D.	Decreasing the ratio of copper	sulfate	tohydrated lime	
61.	Mode	of action of the fungicide Thirar	n is		
	A.	Inhibition of electron transport	chain in	mitochondria	

	B.	Inhibition of enzymes in Kreb's	cycle					
	C.							
	D.	Inhibition of strobulin inhibitors						
62.	The fo	The four disease control principles given by H.H. Whetzel in 1929 are						
	A.							
	В.	Exclusion, Eradication, Protection, Therapy						
	C.	Exclusion, Avoidance, Protection	n, Thera	apy				
	D.	Exclusion, Avoidance, Protection	n, Resis	tance				
63.	First s	ystemic and broad spectrum fungi	icide					
	A.	Benzimidazole	B.	Triazole				
	C.	Metalaxyl	D.	Fosteyl Al				
64.	4th gei	neration fungicide includes (1991-	2000)					
	A.	Protectant and contact						
	В.	Systemic and site specific						
	C.	Systemic, site specific and broa	d spectr	rum				
	D.	Novel modes of action, site spe	ecific an	d broad spectrum				
65.	First s	First systemic site specific fungicide						
	A.	Benzimidazole	B.	Strobilurins				
	C.	Metalaxyl	D.	Fosteyl Al				
66.	Which	Which of the following sentences are not true regarding the fungicide Metalaxyl						
	A.	A. It was developed in 1977 against downy mildew						
	В.	It is the first enantiomeric fungion	cide intr	oduced				
	C.	It is not biodegradable and envir	ronment	ally safe				
	D.	It is readily taken up by plants an	nd highl	y mobile inside the plant				
67.	Resist	Resistance developed by a pathogen suddenly against fungicide with single site of						
	action							
	A.	Qualitative resistance	В.	Quantitative resistance				
	C.	Re-esixtance resistance	D.	Cross resistance				
68.	The fungicide Azoxystrobin moves in the plant by							
	A.	Systemic movement	В.	Translaminarly				
	C.	None of the above	D.	Both a and b				
69.	The fin	The first systemic fungicide against oomycetes is						
	A.	Metalaxyl	В.	Triazoles				
	C.	Strobilurin	D.	Benlate				
70.		ABC (ATP binding cassette) that p						
	A.	Mycosphaerellagraminicola	B.	Puccinia graminis				
	<i>C</i> .	Ustillagotritici	D.	Ustillago maydis				

CHAPTER 8 FUNGICIDES AND CHEMICAL CONTROL OF PLANT DISEASES

- 1. Ans: D, Curzate, Source: Systemic fungicides; Author: S C Vyas; Page No: 43]
- 2. Ans: C, Carboxin Source: Systemic fungicides; Author: S C Vyas; Page No: 7]
- 3. Ans: D, All of them, Source: Systemic fungicides; Author: S C Vyas; Page No: 11]
- **4. Ans:** C, Dithiocarbamates, Source: Systemic fungicides; Author: S C Vyas; Page No: 11]
- **5. Ans:** C, Third generation compounds, Source: Systemic fungicides; Author: S C Vyas; Page No: 11]
- **6. Ans: A**, Methyl-1-(butyl carbamoyl)-2-benzimidazole carbamate, Source: Systemic fungicides; Author: S C Vyas; Page No: 68]
- 7. Ans: C, Both of them, Source: Systemic fungicides; Author: S C Vyas; Page No: 310]
- **8. Ans:** C, Basitac, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 299]
- **9. Ans: D**, All of the above, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 302]
- **10. Ans: B**, Phenylamides, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 296]
- 11. Ans: C, Cymoxanil, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 296]
- **12. Ans: B**, Dichlone, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 294]
- **13. Ans:** C, 1966, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 299]
- **14. Ans: A**, Nabam, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 293]
- **15. Ans: D**, All of them, Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 295]
- **16. Ans: B**, Systemic, Source: Modern Plant Pathology; Author: H C Dube; Page No: 273]
- **17. Ans: B**, Strobilurins, Source: Modern Plant Pathology; Author: H C Dube; Page No: 274]

- **18. Ans: A**, Cross resistance, Source: Modern Plant Pathology; Author: H C Dube; Page No: 277
- **19. Ans:** C, Both translaminarly and systemically, Source: Modern Plant Pathology; Author: H C Dube; Page No: 274
- **20. Ans: B**, Metalaxyl M, Source: Modern Plant Pathology; Author: H C Dube; Page No: 289
- **21. Ans: A,** Copper sulphate: Lime: Water (4,4,50), Source: HC Dube: Modern Plant Pathology, page: 286
- **22. Ans: A,** Copper sulphate (1.8 kg): Sodium carbonate (2.3 kg): Water (227 L), Source: HC Dube: Modern Plant Pathology, page: 286
- 23. Ans: D, All the above, Source: HC Dube: Modern Plant Pathology, page: 287
- 24. Ans: D, All the above, Source: HC Dube: Modern Plant Pathology, page: 294
- 25. Ans: D, All the above, Source: HC Dube: Modern Plant Pathology, page: 294
- **26. Ans:** C, Both A and B, Source: HC Dube: Modern Plant Pathology, page: 294
- **27. Ans: B,** Cause membrane dysfunction in fungi, Source: HC Dube: Modern Plant Pathology, page: 294
- **28. Ans: A,** Inhibit succinate dehydrogenase activity and disrupt respiration, Source: HC Dube: Modern Plant Pathology, page: 294
- **29. Ans: D**, Inhibit fungal mitosis by interfering with spindle formation, Source: HC Dube: Modern Plant Pathology, page: 294
- **30. Ans: A,** Hydroxypyrimidines, Source: HC Dube: Modern Plant Pathology, page: 294
- **31. Ans: B,** Inhibit rRNA synthesis, Source: HC Dube: Modern Plant Pathology, page: 294
- 32. Ans: D, Both A and B, Source: HC Dube: Modern Plant Pathology, page: 294
- **33. Ans: A,** Inhibit melanin biosynthesis, Source: HC Dube: Modern Plant Pathology, page: 294
- **34. Ans: A,** Block electron transport at quinol (Qo) site of oxidation and inhibit ATP synthesis, Source: HC Dube: Modern Plant Pathology, page: 295
- **35. Ans: A,** Inhibit glucose phosphorylation, Source: HC Dube: Modern Plant Pathology, page: 295
- **36. Ans: A**, Downy mildew of grape vine, Source: R. K. Sharma, B. B. Singh, Agriculture at a glance, Page no: 377
- **37. Ans: D**, All of these, Source: R. K. Sharma, B. B. Singh, Agriculture at a glance, Page no: 377
- **38. Ans: A**, Calaxin, Source: R. K. Sharma, B. B. Singh, Agriculture at a glance, Page no: 378
- **39. Ans: D**, Both A and B, Source: R. K. Sharma, B. B. Singh, Agriculture at a glance, Page no: 378
- **40. Ans: D**, All of these, Source: R. K. Sharma, B. B. Singh, Agriculture at a glance, Page no: 379

- 41. Ans: D, Both A and B, Source: H. C. Dune, Modern plant pathology, Page no: 284
- **42. Ans: A**, Carboxin @2.5g/kg of seed, Source: H. C. Dune, Modern plant pathology, Page no: 284
- 43. Ans: B, Vitavax, Source: H. C. Dune, Modern plant pathology, Page no: 285
- 44. Ans: A, Plantvax, Source: H. C. Dune, Modern plant pathology, Page no: 285
- **45. Ans: A**, Powdery mildew, Source: H. C. Dune, Modern plant pathology, Page no: 285
- **46. Ans: A**, Mason, 1887, Source: H. C. Dune, Modern plant pathology, Page no: 286
- **47. Ans:** C, Raw linseed oil, Source: H. C. Dune, Modern plant pathology, Page no: 286
- **48. Ans: D**, All of these, Source: H. C. Dune, Modern plant pathology, Page no: 286
- **49. Ans: D**, Vapam, Source: H. C. Dune, Modern plant pathology, Page no: 288
- **50. Ans: A**, Von Schmeling and Kulka, 1966, Source: H. C. Dune, Modern plant pathology, Page no: 289
- 51. Ans: A, Vitavax, Source: H. C. Dune, Modern plant pathology, Page no: 290
- **52. Ans**: **B**, Benzimidazoles and Sterol demethylation inhibitors, Book: G.N. Agrios, page no: 331
- **53.** Ans: C, Safener, Book: G.N. Agrios, page no: 334
- **54. Ans**: **A**, 1970, Book: G.N. Agrios, page no: 334
- **55. Ans**: **A**, 10:2:2 mixture of lanoline, rosin, gum, Book: G.N. Agrios, page no: 337
- **56. Ans**: **D**, All of the above, Book: G.N. Agrios, page no: 338
- 57. Ans: C, The region where it was discovered, Book: G.N. Agrios, page no: 338
- **58.** Ans: B, Copper fungicide, Book: G.N. Agrios, page no: 338
- **59. Ans**: D, All of the above, Book: G.N. Agrios, page no: 338
- **60. Ans**: A, Increasing the ratio of hydrated lime to copper sulfate, Book: G.N. Agrios, page no: 338
- 61. Ans: B, Inhibition of enzymes in Kreb's cycle, Book H. C. Dube page 294
- **62. Ans**: B, Exclusion, Eradication, Protection, Therapy, Dr. Robin Gogoi class
- **63.** Ans: A, Benzimidazole, Dr. Robin Gogoi class
- **64. Ans**: D, Novel modes of action, site specific and broad spectrum, Dr. Robin Gogoi class
- **65. Ans**: B, Strobilurins, Book H. C. Dube page 290
- **66. Ans**: C, It is not biodegradable and environmentally safe, Book H. C. Dube page 276
- **67. Ans**: A, Qualitative resistance, Book H. C. Dube page 276
- **68. Ans**: D, Both a and b, Book H. C. Dube page 274
- **69.** Ans: A, Metalaxyl, Dr. Robin Gogoi class
- **70. Ans**: A, *Mycosphaerella graminicola*, Book H. C. Dube page 277

CHAPTER 9 BIOLOGICAL CONTROL OF PLANT DISEASES

l. Water melon variety that allows the buildup of antagonistic species against F			ic species against Fusarium	
wilt is:				
	A.	Crimson sweet	В.	Sugar baby
	C.	Arka manik	D.	Black magic
2.	The fa	ct that suppressiveness of suppressive so	oil is due	to antagonistic microflora
can be	tested 1	by		
	A.	Pasteurization of the soil at 60°C for 30	0 mins	
	B.	Pasteurization of the soil at 90°C for 60	0 mins	
	C.	Pasteurization of the soil at 60°C for 90	0 mins	
	D.	Pasteurization of the soil at 60°C for 60	0 mins	
3.	The cr	op family that develops a sort of "soil su	ppressiv	eness" for the next crop in
the cro	pping p	attern		
	A.	Crucifereceae	В.	Leguniminaceae
	C.	Solanaceae	D.	Fabaceae
4.	Root k	anot nematode are trapped by		
	A.	Crotalaria	В.	Black nightshade
	C.	Cereal crops	D.	Beans
5.	Plant 1	that are antagonistic to nematodes by sec	creting to	oxic substances
	A.	Marigold	В.	Asparagus
	C.	Both a and b	D.	Neither a nor b
6.	The fi	rst bacterium used as Biocontrol agent		
	A.	Pseudomonas fluorescens	В.	Bacillus subtilis
	C.	Bacillus thureinginsis	D.	Rhizobium radiobacter
7.		virulence due to transfer of double strand		
	discov	vered naturally heally cankers of Chestnu	t trees w	hile identifying the
	A.	Virulent strains of Cryphonectria par	rasitca	
	В.	Avirulent strains of Cryphonectria po	arasitca	
	C.	Double stranded RNA mycovirus		
	D.	All of the above.		

8.		antibiotic phenzine-1-caboxylic acid		onsible for suppressive soil			
	_	st "Take all" disease decline of whe					
	A.	Pseudomonas fluorescens	В.	Bacillus subtilis			
	C.	Bacillus thureinginsis	D.	Rhizobium radiobacter			
9.	Appli	ication of green manure is actually a r	nethod of biol	ogical control brought about			
	by in	crease in population of saprobic orga	anisms. The m	ethod is:			
	A.	Antibiosis	В.	Hyperparasitism			
	C.	Competition	D.	Hypovirulance			
10.	The	root nematode is controlled by the pa	redatory fungi	i			
	A.	Trichoderma virens	B.	Arthobotrys sp.			
	C.	Dactylella bembicoides	D.	All of the above			
11.	The n	nethod of biocontrol in which the bio	agents are dire	ectly applied to the infection			
	court	, at high population level is					
	A.	Innundative application	В.	Augmentative application			
	C.	Occasional application	D.	None of the above			
12.	Mark	out the right sentence from the follow	owing				
	A.	Monogenic resistance is durable,	qualitative, as	nd race specific			
	В.	•					
	C.						
	D.	Monogenic resistance is durable,	quantitative,	and race specific			
13.	The t	The term Biological control was introduced by					
	A.	Sanford	В.	Von Tubeuf			
	C.	Garret	D.	Cook			
14.	Plant	Plant resistance formally got included in biological control in the definition given by					
	A.	Sanford	В.	Von Tubeuf			
	C.	Garret	D.	Cook			
15.	Biocontrol agents confers which type of resistance						
	A.	SAR	В.	ISR			
	C.	Cross protection	D.	All of the above			
16.	SAR	is induced by					
	A.	Virulent pathogen	В.	Avirulent pathogen			
	C.	PGPR	D.	Any microbe			
17.	In pre	esently grown resistant cultivars, res	sistance has be	· ·			
	_	plasm of		8			
	A.	Hybrids	В.	Wild species			
	C.	Resistant varieties	D.	Cultivated varieties			
18.	The	gene joined to 35S promoter of CaM	IV and incorp	orated in tobacco plants to			
		op resistance against bud worm and	_	_			
	Α.	CPTI	В.	CTTI			
	C.	CPPI	D.	CTPI			

19.	Two	genes which have been incorporated in pla	ants for	r fungal resistance are			
1).	A.						
	В.	Genes encoding for β-endoglucanase					
	C.	Both a and b	D.	None of the above			
20.		roinfection, <i>Ti</i> plasmid is made more effection.					
20.	m ag	hormones	iive by	defetting genes encoding			
	A.	Auxin	В.	Cytokinin			
	C.	Both a and b	D.	None of the above			
21.	То со	ontrol Crown gall, recommended bio-contro	ol agent	t Agrobacterium radiobacter			
		K-84 is under the trade name of 1	8	8			
	A.	Blue circle	В.	Intercept			
	C.	BINAB	D.	Norbac 84-C			
22.	Galltı	rolis					
	A.	Pseudomonas spp.	В.	Pythium oligandrum			
	C.	Agrobacterium radiobacter K-84	D.	None.			
23.	The r	najor bio-agent of BINAB is2					
	A.	Trichoderma harzianum	В.	Trichoderma lignorum			
	C.	Trichoderma harzianumpolysporum	D.	None			
24.	Rhizoctonia spp. can be controlled by 3						
	A.	Dagger G	В.	Trichodermin-3			
	C.	Gilogard	D.	All of the Above			
<i>25</i> .	Fusa	Fusarium oxysporum Schlechtendal (nonpathogenic strains)4					
	A.	Biofox C	В.	Giligard			
	C.	Mycostop	D.	F-Stop			
26.	Polygandron5						
	A.	Streptomyces griseovirides	В.	Gliocladium virens			
	C.	Pythium oligandrum	D.	Fusarium oxysporum			
27.	TY is 6						
	A.	Trichoderma harzianum	В.	Streptomyces griseovirides			
	C.	Pseudomonas fluorescens	D.	Pseudomonas cepacian			
28.	Pythi	Pythium ultimumTrow in sugar beet can be controlled by using7					
	A.	TY	В.	Polygandron			
	C.	Mycostop	D.	F-stop			
29.	Sourc	ce of Coniothrin8		_			
	A.	Coniothyriumminitans	В.	Gliocladium virens			
	C.	Pythium oligandrum					
	D.	Trichoderma harzianumpolysporum					
30.	Pseu	idomonas fluorescens					
	A.	Gilogard	B.	Blue Circle			
	C.	Dagger G	D.	BINAB			

31.	Tride	nt						
31.	A.							
	В.	B. thuringiensis kurstaki						
	Б. С.	B. thuringiensis aizawai						
		B. thuringiensis israelensis						
22	D.	B. thuringiensis morrisoni						
32.	Kodi	•	D	D				
	A.	Bacillus subtilis	В.	B. velegensis				
22	C.	Trichoderma harzianum	D.	None				
33.		osan is used against	ъ.	D				
	A.	Fungus	В.	Bacteria				
	C.	Nematodes	D.	None				
34.	•	al 300 is used control						
	A.	Meloidogyne spp.						
	В.	Ditylenchus myceliophagus						
	C.	Both	D.	None				
35.	Clan	Clandosan which is used to control plant-parasitic nematodes is a						
	based	l bio control product						
	A.	NPV	В.	fungal				
	C.	bacterial	D.	Chitin				
36.	The a	The adoption of any biological control agent in commercial agriculture is dependent						
	on it	on its and its						
	A.	Potential market; Cost of develop	nent					
	B.	Reliability; Availability						
	C.	Applicability; potential market						
	D.	None of the above						
37.		is a form of disease	e control tha	at uses the natural defence				
	respo	responses of the plant, which may include the production of phytoalexins, additional						
	_	lignification of cells, and other mechanisms						
	A.	Induced resistance						
	В.	Systemic Acquired Resistance						
	C.	Cross-Protection	D.	None of the above				
38.			ological vigo	r and reproductive capacity,				
	can o	ccur in small laboratory populations o	fbiocontrol	agents such as parasites and				
		ators over time.						
		eterosis	B. Inbreeding depression					
		ross-breeding		one of the above				
39.		ostop is the trade name	2.10	· · ·				
	A.	Trichoderma harzianum	В.	Trichoderma lignorum				
	C.	Streptomyces griseovirides	D.	None				
	~.	- Promy to Silve or in the	ν.					

40.	Non-	pathogenic isolates Fusarium oxyspor	um is marl	veted as a trading name of			
то.	A.	Fusaclean	ит 13 marr В.	Bio-fox C			
	C.	Both	D.	None			
41.		chestnut blight pathogen Cryphonectri					
71.			a parasiiic	a is naturally controlled by			
		virulent strain of the fungus in- Ireland	D	Italy			
	A. C.		В.	Italy			
10		France	D.	Canada			
42.		chestnut blight pathogen Cryphonectria	L	s controlled by hypovirulent			
		n of the fungus through artificial inocula		T. 1			
	A.	Ireland	В.	Italy			
10	C.	France	D.	Canada			
43.		ovirulent strains of chestnut blight path		honectria parasitica carry-			
	Α.	Single stranded RNA virus (ssRNA	*				
	В.	Double stranded RNA virus (dsRN					
		C. Single stranded DNA virus (ssDNA)					
	D.	Double stranded DNA virus (dsDN	/				
44.		Principal fungi used as biological control agents against soil borne diseases include-					
	A.	Gliocladium virens					
	В.	Trichoderma harzianum					
	C.	Trichoderma viride	D.	All of the above			
45.		Preharvest and postharvest Botrytis rot of strawberries can be reduced by spraying					
	this b	piocontrol agent on strawberry blossom	s and youn	_			
	A.	Cladosporium sp.	В.	Trichoderma sp.			
	C.	Candida oleophila	D.	All of the above			
46.	The yeast Candida oleophila was approved under the trade name Aspire for-						
	A.	Post harvest decay of citrus and ap	ple B.	Leaf spot diseases			
	C.	Powdery mildew diseases	D.	Rust and smut diseases			
47.	Control of crown gall disease based on production of a bacteriocin called agrocin						
	84 which is produced by-						
	A.	Agrobacterium radiobacter					
	В.	Agrobacterium tumefaciens					
	C.	Agrobacterium rhizogens					
	D.	None of the above					
48.	Bacte	Bacterial biocontrol agent which can be used for seed treatment to control diseases-					
	A.	Bacillus subtilis	B.	Streptomyces sp.			
	C.	Pseudomonas fluorescens	D.	All of the above			
49.	The b	pacterial biocontrol agent that provides	effective b	iocontrol of damping-off			
		se of legumes-		1 0			
	A.	Bacillus subtilis	В.	Bacillus cereus			
	C.	Pseudomonas fluorescens	D.	Pantoea sp.			

50.	Bact	Bacterial biocontrol agents that controls diseases of aerial plant parts-					
	A.	Erwinia herbicola					
	B.	Pseudomonas fluorescens					
	C.	Bacillus subtilis	D.	All of the above			
51.	Whic	ch one of the following non-ice nucleation	n-active a	intagonistic bacteria applied			
	to ice	e nucleation-active bacteria on the plant	surfaces	to protect frost-sensitive			
	plant	s from injury at low temperatures?		_			
	A.	Erwinia herbicola					
	В.	Pseudomonas fluorescens					
	C.	Pseudomonas syringae					
	D.	All of the above					
52.	The	The fungus Colletotrichum gloeosporioides, sold as Collego is effective against-					
	A.	Aeschynomene virginica	В.	Morrenia adorata			
	C.	Cassia obtusifolia	D.	All of the above			
53.	The	The fungus which can be effectively used to control weeds-					
	A.	Colletotrichum gloeosporioides					
	В.	Phytophthora palmivora					
	C.	Alternaria cassiae	D.	All of the above			
54.	The fungus which can be used as mycoherbicide for control of water hyacinth						
	(Eich	(Eichhornia crassipes)-					
	A.	Colletotrichum gloeosporioides	В.	Cercospora rodmanii			
	C.	Phytophthora palmivora	D.	Alternaria cassiae			
55.	The 1	most used viral gene for making virus res	sistant tra	ınsgenic plant is-			
	A.	Coat protein	В.	Replicase			
	C.	Movement protein	D.	All of the above			

CHAPTER 9 BIOLOGICAL CONTROL OF PLANT DISEASES

- 1. Ans: a. Crimson sweet. Book: G.N. Agrios, page no: 305
- 2. Ans: a. **Pasteurization of soil at 60! for 30 mins.** Book: G.N. Agrios, page no: 305
- 3. Ans: a. Cruciferaceae. Book: G.N. Agrios, page no: 305
- 4. Ans: a. **Crotocaria**. Book: G.N. Agrios, page no: 308
- 5. Ans: c. Marigold and asparagus. Book: G.N. Agrios, page no: 30
- 6. Ans: d. **Rhizobium radiobacter.** Book: Modern plant pathology H. C. Dube, page no: 257
- 7. Ans: b. **Avirulent strains** *C. parasitica*. Book Modern plant pathology H. C. Dube, page no: 257
- 8. Ans: a. *Pseudomonas fluorescens*. Book: Modern plant pathology H. C. Dube, page no: 258
- 9. Ans: c. Competition. Book: Modern plant pathology H. C. Dube, page no: 259
- 10. Ans: c. *Dactylella bembicoides*. Book: Modern plant pathology H. C. Dube, page no: 260
- 11. Ans: a. **Innundative application.** Book: Modern plant pathology H. C. Dube, page no: 261
- 12. Ans: b. Monogenic resistance is unstable, qualitative, and race specific. Book: Modern plant pathology H. C. Dube, page no: 261
- 13. Ans: b. **Von Tubeuf.** Book: Modern plant pathology H. C. Dube, page no: 13
- 14. Ans: d. Cook. Book: Modern plant pathology H. C. Dube, page no: 255
- 15. Ans: d. All of the above Book: Modern plant pathology H. C. Dube, page no: 256
- 16. Ans: b. **Avirulent pathogen** Book: Modern plant pathology H. C. Dube, page no: 257
- 17. Ans: b. Wild species Book: Modern plant pathology H. C. Dube, page no: 262
- 18. Ans: a. **CPTI** Book: Modern plant pathology H. C. Dube, page no: 264
- 19. Ans: c. **Both a and b.** Book: Modern plant pathology H. C. Dube, page no: 266
- 20. Ans: c. Both a and b. Book: Modern plant pathology H. C. Dube, page no: 263
- 21. Ans: d. Norbac 84-C. Source: Handbook of biological control, Ch: 32 page: 851
- 22. Ans: c. *Agrobacterium radiobacter* **K-84**. Source: Handbook of biological control, Ch: 32 page: 851

- 23. Ans: d. None. Source: Handbook of biological control, Ch: 32 page: 851
- 24. Ans: a. **Dagger G** Source: Handbook of biological control, Ch: 32 page: 851
- 25. Ans: c. Mycostop. Source: Handbook of biological control, Ch: 32 page: 851
- 26. Ans: b. *Gliocladium virens*. Source: Handbook of biological control, Ch: 32 page: 851
- 27. Ans: a. *Trichoderma harzianum*. Source: Handbook of biological control, Ch: 32 page: 851
- 28. Ans: b. **Polygandron**. Source: Handbook of biological control, Ch: 32 page: 851
- 29. Ans: a. *ConiothyriumminitAns:* Source: Handbook of biological control, Ch: 32 page: 851
- 30. Ans: a. Gilogard. Source: Handbook of biological control, Ch: 32 page: 851
- 31. Ans: d. *B. thuringiensis morrisoni*. Source: Handbook of biological control, Ch: 32 page: 851
- 32. Ans: a. *Bacillus subtilis*. Source: Handbook of biological control, Ch: 32 page: 851
- 33. Ans: c. Nematodes. Source: Handbook of biological control, Ch: 32 page: 851
- 34. Ans: b. *Ditylenchus myceliophagus*. Source: Handbook of biological control, Ch: 32 page: 851
- 35. Ans: d. Chitin. Source: Handbook of biological control, Ch: 32 page: 851
- 36. Ans: b. **Reliability**; **Availability**. Source: Handbook of biological control, Ch: 32 page: 851
- 37. Ans: a. **Induced resistance** Source: Handbook of biological control, Ch: 32 p Page: 851
- 38. Ans: b. **Inbreeding depression**. Source: Handbook of biological control, Ch: 32 page: 851
- 39. Ans: c. *Streptomyces griseovirides*. Source: Handbook of biological control, Ch: 32 page: 851
- 40. Ans: c. **Both**. Source: Handbook of biological control, Ch: 32 page: 851
- 41. Ans: b. **Italy.** Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-325
- 42. Ans: c. **France.** Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-325
- 43. Ans: b. **Double stranded RNA virus (dsRNA)**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-325
- 44. Ans: d. **All of the above.** Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-325
- 45. Ans: b. *Trichoderma sp.* Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-326]
- 46. Ans: a. **Post-harvest decay of citrus and apple.** Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-326
- 47. Ans: a. *Agrobacterium radiobacter*. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-326 *Guide book of plant Pathology* ♦ 152

- 48. Ans: d. **All of the above**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-326
- 49. Ans: b. *Bacillus cereus*. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-327
- 50. Ans: d. **All of the above**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-328
- 51. Ans: d. **All of the above**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-328
- 52. Ans: d. **All of the above**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-329
- 53. Ans: d. **All of the above**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-329
- 54. Ans: b. *Cercospora rodmanii*. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-329
- 55. Ans: a. **Coat protein**. Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-321-322

CHAPTER 10 PLANT DISEASE EPIDEMIOLOGY

1. When a pathogen spreads to and effects many individuals within a popul a relatively large area and within a relatively short time, the phenomeno				
	as	very range area and within a relati	ivery sin	of time, the phenomenon is cancu
	A.	Sporadic	B.	Pandemic
	C.	Epidemic	D.	None
2.		idy of epidemics and the factors to		
~·	A.	Etiology	В.	Epidemiology
	C.	Epiphytology	D.	Forecasting
3.		ssical disease triangle includes w		<u>c</u>
٥.	A.	Virulent pathogen	B.	Susceptible host
	C.	Favorable environment	D.	All of the above
4.				nendous losses in the history are
		lowing?	isea trei	nendous losses in the history are
	Α.	Irish famine	В.	Bengal famine
	C.	Coffee rust	D.	All of the above.
5.		mine was caused by the pathoge		
	A.	Phytopthora infestans	В.	Alternaria solani
	C.	Potato virus X	D.	Helminthosporium oryzae
6.	The for	urth component of disease tetrahe	edron is	1
	A.	Pathogen	B.	Host
	C.	Environment	D.	Time
7.	Statem	ent 1: No epidemic occurs in pla	ants car	rying race-specific (vertical)
	resistar			
	Statem	ent 2: Plants carrying vertical res	sistance	do not allow a pathogen to become
	establis	• •		1 0
	A.	Statement 1 is correct and state	ment 2 i	s incorrect
	B.	Statement 2 is correct and state	ment 1 i	s incorrect
	C.	Both statement 1 and 2 are corn	rect	
	D.	Both statement 1 and 2 are inco	orrect	
8.	Host fa	ctors that affect the development	t of epid	emics are which of the following
	A.	Levels of genetic resistance or s		
	B.	Degree of genetic uniformity of	host pla	nnts
		Guide book of plant Pa	thology :	♦ 154

- C. Type of crop
- D. Age of host plants
- E. All of the above
- 9. Pathogen factors that affect the development of epidemics are
 - A. Levels of virulence
 - B. Quantity of inoculum near hosts
 - C. Types of reproduction of the pathogen
 - D. Ecology of the pathogen
 - E. Mode of spread of the pathogen
 - F. All of the above
- 10. The chances of higher to low rates of epidemics generally occur in which of the following order
 - A. Self-pollinated>cross pollinated>vegetatively propagated plants
 - B. Cross-pollinated>self-pollinated>vegetatively propagated plants
 - C. Vegetatively propagated plants>Self-pollinated>cross pollinated
 - D. Vegetatively propagated plants>Cross-pollinated>self-pollinated
- 11. Statement 1: In diseases of annual crops such as corn, vegetables, rice and cotton epidemics develop much more rapidly

Statement 2: Epidemics of fruits and forest does not take years to develop.

- A. Statement 1 is correct and statement 2 is incorrect
- B. Statement 2 is correct and statement 1 is incorrect
- C. Both statement 1 and 2 are correct
- D. Both statement 1 and 2 are incorrect
- 12. The change of resistance with age is known as
 - A. Syncogenic resistance
 - B. Polygenic resistance
 - C. Oligogenic resistance
 - D. Ontogenic resistance
- **13. Statement 1:** Level of virulence determine the amount of production of inoculum in the host

Statement 2: Virulent pathogens capable of infecting the host rapidly ensure a faster production of larger amount of inoculum, and, thereby, disease, than pathogens of lesser virulence

- A. Statement 1 is correct and statement 2 is incorrect
- B. Statement 2 is correct and statement 1 is incorrect
- C. Both statement 1 and 2 are correct
- D. Both statement 1 and 2 are incorrect
- 14. Pathogens that can produce many generations in a single growing season are known as
 - A. Monocyclic pathogen B. Polycyclic pathogen
 - C. Polyetic pathogen D. None

Guide book of plant Pathology ♦ 155

15.	Most of the viruses are transmitted by which of the following						
	A.	Beetles	B.	Aphids and whiteflies			
	C.	Leafhoppers	D.	Psyllids			
16.	The r	nost important environmental fac	ctors tha	t affect the development of plant			
		se epidemics are		•			
	A.	Moisture and temperature	В.	Rain			
	C.	Sunlight	D.	Wind			
17.	State	ment 1: Low temperature reduc	es the a	mount of inoculum of oomycetes			
		, bacteria, and nematodes that su					
	State	ment 2: High temperature reduc	es the in	oculum of viruses and mollicutes			
	that s	survives hot summer temperature	es				
	A.	*					
	В.	Statement 2 is correct and sta	tement 1	is incorrect			
	C.	Both statement 1 and 2 are co	orrect				
	D.	Both statement 1 and 2 are in	correct				
18.	Whic	h of the following increases the p	ossibilit	y and severity of epidemics?			
	A.	A. Continuous monoculture					
	В.	Large acreages planted to the same variety of crop					
	C.	High levels of nitrogen fertiliz	ation and	d dense planting			
	D.	All of the above					
19.		Which of the following comes under the category of introduction of new pathogens					
	into a	into areas where the host have not had a chance to evolve resistance to these					
	patho	ogens?					
	A.	\mathcal{E}	В.	Dutch elm disease			
	C.	Citrus canker	D.	All of the above			
20.			he relativ	vely quick and easy parameters used			
	in epi	in epidemiological studies?					
	A.	\mathcal{E} 1 \mathcal{E}					
	В.	8 8					
	C.	Measuring of disease incidend	ce				
	D.	All of the above					
21.	AUD	PC stands for					
	A.	1					
	В.	All useful disease progress cu					
	C.	Area under disease progress	curve				
	D.	None					
22.		computer simulation program wr					
	A.	EPICORN	В.	EPIVEN			
	C.	CERCOS	D.	EPIDEM			

23.	Matc	th the following					
	A.	EPIDEM	a. Ce	ercospora			
	В.	CERCOS		ycosphaerella			
	C.	MYCOS		elminthosporium			
	D.	EPICORN		enturia			
	E.	EPIVEN		lternaria			
	A.	A-e, B-a,C-b,D-c, E-d	B.				
	C.	A-a, B-b, C-c, D-d, E-e	D.	A-e, B-d, C-c, D-b, E-a			
24.		ch of the following are new tools					
	A.	Molecular tools	В.	GIS and GPS			
	C.	Geostatistics					
	D.	Remote sensing and Image a	nalvsis				
	E.	All of the above	J				
25.	Matc	th the following					
	A.	BLITECAST	a.	wheat			
	В.	TOM	b.	grapes			
	C.	GrapES	c.	peach and nectarine			
	D.	CONSELLOR	d.	apple			
	E.	CALEX	e.	wheat			
	F.	POMME	f.	tomato			
	G.	MoreCrop	g.	potato			
	A.	A-e, B-c, C-b, D-d, E-a, F-g	_	1			
	В.		A-g, B-f, C-b, D-e, E-c, F-d, G-a				
	C.	A-a, B-f, C-b, D-e, E-c, F-d, G-g					
	D.	A-b, B-f, C-g, D-e, E-a, F-d,	_				
26.	Puccinia recondita and Puccinia graminis spores are resistant to due to						
		presence of melanin in the uredinospore walls					
	A.	High temperature	B.	Relative humidity			
	C.	Systemic fungicides	D.	UV light			
27.		· ·		•			
		At which water potential of soil all the soil borne pathogens are active and cause of isease in the field					
	A.	< 15 bar	B.	> 15 bar			
	C.	10-15 bar	D.	0-10 bar			
28.				graminis spores release And			
			_	vind speed reaches maximum			
	A.	7mph and 18 mph	B.	12 mph and 50 mph			
	C.	3mph and 16 mph	D.	20mph and 80 mph			
29.		method to calculate the viable s					
	A.	Hirst spore trap	В.	Rotorod sampler			
	C	Soil screw tran	D.	let snore tran			

30.	When inoculum density is plotted against disease incidence, a sigmoid curve is							
	obtai	obtained. In which synergism occurs the curve will be,						
	A.	Flatten	В.	Steepen				
	C.	Wavy	D.	Bell shaped				
	31.	Which of the following are d	lirect dise	ease assessment methods				
	i)	Disease loss assessment	ii)	Critical point model				
	iii)	Standard area diagram	iv)	Multiple point model				
	v)	Descriptive keys	ĺ	• •				
	A.	i, v	B.	iii, v				
	C.	ii, iv	D.	i, ii, iv				
32.	A str	aight forward sigmoid curve is co	onverted i	into straight line by log-log				
	trans	formation. Who justified the use	of transfe	ormation on ecological studies				
	A.	Garret 1956	B.	Vander Plank 1963				
	C.	Baker 1978	D.	H.H. Flor 1918				
33.	Disea	ase severity of purple blotch of	onion cau	ised by Alternaria porri calculated				
	by							
	A.	CODEX	B.	EPIDEM				
	C.	AUDPC	D.	EPIDEMIC				
34.	The yield loss assessment for rice blast equation is Y=0.57x where, x denotes							
	A.	Night temperature 10°C for 1	5 days					
	В.	Relative humidity >90% for	15 days					
	C.	No.of pyriform conidia prese	No. of pyriform conidia present in the air					
	D.	Blasted nodes 30 days after l	heading					
35.	Critical point models probably applicable, when							
	i)	The disease is late epidemic						
	ii)	Infection rate 'r' is fairly stal	ble					
	iii)	· ·						
	iv)	High variability in the infecti	on rate 'r	,				
	v)	The area is largely covered b	y single o	crop				
	A.	ii, iii, iv B. i, ii, iii C. i	, ii, v	D. All of the above				
36.	Mult	iple point models are applicable	only wher	1				
	i)	The disease is late epidemic						
	ii)	High variability in the infecti	on rate 'r'	,				
	iii)	Epidemic develop over a long	g time rela	ative to crop life				
	iv)	Dry matter accumulation is a	prolonge	ed process				
	v)	Dry matter accumulation is a	short per	riod				
	A.	i, iii, v	В.	. ii, iii, v				
	C.	i, ii, iv	D.	ii , iii, iv				

27	33.71	(1 (* \$7/0/1) 6	(3/1 3/2)	1:1:1:00		
37.		Who gave the equation $Y(\% loss) = f(X1, X2)$ which is different from multiple point model for yield loss assessment of Wheat stem rust				
	рош А.	•				
	A. C.	Burleigh et al. 1972	В.	James <i>et al.</i> 1972		
20		Calpouzos et al. 1976	D.	Schneider et al. 1976		
38.		t the correct match	.1			
	Α.	Descriptive model – Based or	-	.•		
	В.	Predictive model – Based on				
	C.	Conceptual model – Based or				
• •	D.	Area under the curve model -				
39.		•		orn blight developed by which model		
	A.	Descriptive model	В.	Predictive model		
	C.	AUDPC model	D.	Conceptual model		
40.	_		_	en in and out of th host population or		
		lation area is given by a curve ca	ılled as			
	A.	Rate curve	В.	Disease gradient curve		
	C.	Saturation curve	D.	Bimodel curve		
41.	An ex	xample disease showing symmet	crical (be	ll shaped) rate curves		
	A.	Apple scab	В.	Downey mildew		
	C.	Powdery mildew	D.	Late blight of potato		
42.	Epidemic rate for cucumber mosaic virus					
	A.	0.3-0.5 units/day	В.	0.3-0.6 units/day		
	C.	0.15 units / day	D.	0.02 units / day		
43.	Whic	Which of the following is the decision support system				
	A.	PAWS	B.	TOM		
	C.	CALEX	D.	POMME		
44.	First	expert system in plant pathology	develop	ed in 1983 to diagnose		
	A.	Rice diseases	B.	Wheat diseases		
	C.	Potato diseases	D.	Soybean diseases		
45.	A cui	ve indicates a characteristics of	monocy	clic diseases		
	A.	Bimodel curve	В.	Sigmoid curve		
	C.	Saturation curve	D.	Flattened curve		
46.	The f	irst models of the temporal deve	lopment	of epidemics were developed by		
	A.	Madden	В.	Vander Planck		
	C.	Jones	D.	Campbell		
47.		EM was the forecasting model t		•		
	A.	Mycospherella musicola	В.	Helminthosporium maydis		
	C.	Venturia inequalis	D.	Alternaria solani		
48.		EN was the forecasting model to				
	A.	Mycospherella musicola	B.	Helminthosporium maydis		
	C.	Venturia inequalis	D.	Alternaria solani		
	~ .	, sitted to the quality	۵.	www. sormin		

49.	MYC	OS was the forecasting model to		=
	A.	Mycospherella musicola		
	C.	Venturia inequalis	D.	Alternaria solani
50.	CERC	COS was the forecasting model	to study	the epidemics of
	A.	Mycospherella musicola	В.	Helminthosporium maydis
	C.	Venturia inequalis	D.	Cercospora Blight
51.	Who g	gave the concept of Durable res	sistance?	
	A.	Johnson and law	В.	Watson and Singh
	C.	Campbell and Maden	D.	None of the above
52.	Plants	show adult resistance when the	ey are int	fected with
	A.	Rust	В.	Smut
	C.	Downy mildew	D.	All of the above
53.	Dutch	rules was proposed by		
	A.	Vander planck	B.	Jones
	C.	Van Everdingen	D.	Beaumont
54.	AUDI	PC curve used for the first time	to meas	ure which disease?
	A.	Apple scab	В.	Stem rust of wheat
	C.	Brown spot of rice	D.	Bacterial Blight of rice
55.	AUDI	PC curve was used for the first	time by?	<u>e</u>
	A.		В.	Jones
	C.	Campbell	D.	Madden
56.	CONS	SELLER expert system was dev	eloped f	for which crop?
	A.	Wheat	В.	Rice
	C.	Maize	D.	Sugarcane
57.	WISD	OOM decision support system w	as devel	•
	A.	Tomato	В.	Brinjal
	C.	Potato	D.	Cassava
58.	CALE	EX expert system was developed	d for whi	ich crop?
	A.	Wheat	В.	APPLE
	C.	PEACH	D.	Peach and nectarine
59.	RADA	AR decision support system was	s develor	ped for which crop?
	A.	Wheat	_	APPLE
	C.	PEACH	D.	Peach and nectarine
60.	Who	developed the first computer sim	ulation I	
	A.	Marshal and Kulka	В.	Waggoner and Horsfall
	C.	Campbell and Maden	D.	Schledin and Schwann
61.		developed the first visual scale f		ating the disease.?
	A.	Jones	В.	Horsfall
	C.	Cobb	D.	None of the above

62.	Prote	ein for protein theory was give	n by?		
	A.	Jones	В.	Horsfall	
	C.	Vanderplanck	D.	None of the above	
63.	Who	gave the term clean and dirty	crop appro	ach?	
	A.	Jones	В.	Marshall	
	C.	Cobb	D.	None of the above	
64.	Who gave the concept of gene pyrammiding?				
	A.	Johnson and law	В.	Watson and Singh	
	\mathbf{C}	Campbell and Maden	D.	None of the above	

CHAPTER 10 PLANT DISEASE EPIDEMIOLOGY

- 1. (Ans: C, Source: G.N Agrios pg.no 266)
- 2. (Ans: B, Source: G.N Agrios pg.no 266)
- 3. (Ans: D, Source: G.N Agrios pg.no 266)
- 4. (Ans: D, Source: G.N Agrios pg.no 266)
- 5. (Ans: A, Source: G.N Agrios pg.no 266)
- 6. (Ans: D, Source: G.N Agrios pg.no 267)
- 7. (Ans: D, Source: GN Agrios pg.no 267)
- 8. (Ans: E, Source: G.N Agrios pg.no 268)
- 9. (Ans: F, Source: G.N Agrios pg.no 269,270)
- 10. (Ans: C, Source: G.N Agrios pg.no 268)
- 11. (Ans: A, Source: G.N Agrios pg.no 268)
- 12. (Ans: D, Source: G.N Agrios pg.no 268)
- 13. (Ans: C, Source: GN Agrios pg.no 269)
- 14. (Ans: B, Source: G.N Agrios pg.no 270)
- 15. (Ans: B, Source: GN Agrios pg.no 271)
- 16. (Ans: A, Source: G.N Agrios pg.no 271)
- 17. (Ans: C, Source: GN Agrios pg.no 272)
- 18. (Ans: D, Source: G.N Agrios pg.no 272)
- 19. (Ans: D, Source: G.N Agrios pg.no 273)
- 20. (Ans: C, Source: GN Agrios pg.no 273)
- 21. (Ans: C, Source: GN Agrios pg.no 273)
- 22. (Ans: D, Source: G.N Agrios pg.no 280)
- 23. (Ans: A, Source: G.N Agrios pg.no 280)
- 24. (Ans: E, Source: G.N Agrios pg.no 283,284)
- 25. (Ans: B, Source: G.N Agrios pg.no 288,289)
- 26. (Ans: D, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 119)
- 27. (Ans: A, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 119)
- 28. (Ans: C, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 119)
- 29. (Ans: D, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 121)

- 30. (Ans: B, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 122)
- 31. (Ans: B, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 123)
- 32. (Ans: C, Source; Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 122)
- 33. (Ans: A, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 126)
- 34. (Ans: D, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 127)
- 35. (Ans: B, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 128)
- 36. (Ans: D, Source; Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 128)
- 37. (Ans: C, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 129)
- 38. (Ans: B, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 130)
- 39. (Ans: D, Source: Fundamentals of plant pathology, Pathak, Khatri and Pathak, Page No. 133)
- 40. (Ans: B, Source: Plant Pathology, Agrios Page No. 274)
- 41. (Ans: D, Source: Plant Pathology, Agrios Page No. 276)
- 42. (Ans: C, Source: Plant Pathology, Agrios Page No. 277)
- 43. (Ans: A, Source: Plant Pathology, Agrios Page No. 289)
- 44. (Ans: D, Source: Plant Pathology, Agrios Page No. 289)
- 45. (Ans: C, Source: Plant Pathology, Agrios Page No. 276)
- 46. (Ans: B, Source: Modelling plant disease epidemics A. van Maanen1 and X.-M. Xu, European Journal of Plant Pathology 109: 669–682, 2003)
- 47. (Ans: D, Source: G.N Agrios, pg.no- 280)
- 48. (Ans: C, Source: G.N Agrios, pg.no- 280)
- 49. (Ans: A, Source: G.N Agrios, pg.no- 280)
- 50. (Ans: D, Source: G.N Agrios, pg.no- 280)
- 51. (Ans: A, Source: Durable resistance: A key to sustainable management of pathogens and pests)
- 52. (Ans: D, Source: G.N Agrios, pg.no- 268)
- 53. (Ans: C, Source: THE EPIDEMIOLOGY OF PLANT DISEASES, D. GARETH JONES Page No; 212)
- 54. (Ans: B, Source: G.N Agrios, pg.no- 269)
- 55. (Ans: A, Source: G.N Agrios, pg.no- 269)
- 56. (Ans: A; Source: International Journal of Science Technology & Engineering Vol. 1, Issue 5, November 2014)

- 57. (Ans: C, Source: In book: Advanced Informatics for Computing Research page 69)
- 58. (Ans: D, Source: International Journal of Science Technology & Engineering, Vol. 1, Issue 5, November 2014)
- 59. (Ans: B, Source: In book: Advanced Informatics for Computing Research page 69)
- 60. (Ans: B, Source: Plant Disease: An Advanced Treatise: How Disease Develops in Populations page 203)
- 61. (Ans: C, Source: Plant disease severity estimated visually: a century of research, best practices, and opportunities for improving methods and practices to maximize accuracy)
- 62. (Ans: C, Source: Disease resistance in plants Page 22)
- 63. (Ans: B, Source: Multiline varieties and disease control: I. The "dirty crop" approach with each component carrying a unique single resistance gene)
- 64. (Ans: B, Source: Gene pyramiding an overview)

CHAPTER 11 PLANT DISEASE CONTROLAND MANAGEMENT

1. Potato seed tubers can be made free of viruses by growing in			by growing in	
	A.	Northeastern regions	B.	Western regions
	C.	Southeastern regions	D.	Northern regions
2.	Spacing	g plants properly in the field i	nhibits infe	ction by certain pathogens like
	\hat{A} .	Pythium B.		tis and Peronospora tabacina
	C.	Fusarium D.	Sclero	otinia sclerotiorum
<i>3</i> .	T. harz	ianum fungus has been shov	vn to parasi	tize mycelia of
	A.	Rhizoctonia and Sclerotium	т В.	Pythium and Phytophthora
	C.	Fusarium and Heterobasia	dion D.	All of the above
4.	Meloid	ogyne javanica and Pratyle	enchus sp. 1	nematodes are parasitized by
	A)	Pasteuria (Bacillus) penetra	ans B)	Psedumonas fluorescence
	C)	Trichoderma viride	D)	Trichoderma harzianum
5.	Crotalo	aria plants trap the juveniles	of which of	f the following nematode?
	A)	Pratylenchus sp.	B)	Trichuris trichiura
	C)	Meloidogyne sp.	D)	Globodera sp.
6.	The pro	otection provided to a plant b	y infection	with a mild strain of a virus from
	subsequ	uent infection by a more seve	re strain of	the same virus that normally causes
	more se	evere symptoms		
	A)	Cross-resistance	B)	Cross protection
	C)	Both	D)	None of the above
7. Acti	gard is a	n example of		
	A)	Plant hormone	B)	Plant activators
	C)	Anti-transpirant	D)	None
8. Sour	rce of As	pire is		
	A)	Candida oleophilaI-182	B)	Streptomyces lydicus
	C)	B. pumilus GB34	D)	Erwinia amylovora
9. Sour	rce of M	essenger is		
	A)	B. pumilus GB34	B)	Ampelomyces Quisqualis
	<i>C)</i>	Erwinia amylovora	D)	Streptomyces lydicus
10. Ber	nzodiath	iazole derivative is the source	e of	
	A)	Actinovate	B)	Bioguard
	C)	YieldShield	D)	Bion WG50

11) The	e source	of AQ10 Biofungicide is1					
	A)	Ampelomyces quisqualisM-10	B)	P. fluorescens			
	C)	P. syringae	D)	All of the above			
12)	Cercos	pora rodmanii is used to control	[
	A)	Mikania micrantha	B)	Eichhornia crassipes			
	C)	Lantana camara	D)	None			
13)	Root Sl	nield is used to control	,				
ŕ	A)	Pythium spp.	B)	Rhizoctonia spp.			
	C)	Fusarium spp.	D)	All of the above			
14)		is a synthetic salicyc	lic acid	plus oxygen generator.			
	A) Oxy	com	B)	Serenade			
	C) Aspi	re	D)	Actinovate			
15)		Bordeaux Mixture What Acts A	s A 'Saf	ener'?			
ŕ	A)	Lime	B)	Copper			
	C)	Both Copper and Lime	D)	None of The Above			
16)	Chemical compounds that act as plant defense activators2						
ĺ	A)	SalicyclicAcid (SA)	B)	IsonicotinicAcid (INA)			
	C)	Phenolic Acids	D)	All of The Above			
17)	Which is the oldest known fungicide element? 3						
ŕ	A)	Carbon	B)	Nitrogen			
	C)	Sulphur	D)	Phosphate			
18)	Chlora	nil and Dichlone are	,	-			
ŕ	A)	Phenolic Compunds	B)	Quinones			
	C)	Aromatic Compunds	D)	Film-Forming Compounds			
19)	Pentacl	Pentachloro nitrobenzene is a long-lasting fungicide used against4 – pg no : 340					
ĺ	A)	Soil-borne pathogens	B)	Seed-borne pathogens			
	C)	Wind-borne pathogens	D)	All of the above			
20)	ŕ	also marketed as "C	edomon	" used to controlBarley, oat leaf			
	spots, Fusarium on grain cereals5						
	_	udomonas aureofaciens	B) P. fluorescence				
	C) P. s	· · · · · · · · · · · · · · · · · · ·	, .	chlororaphis			
21.	The fur	_	n its sup	remacy over all the other test			
	fungicides, both in transplanted and upland conditions in checking the blast infection						
	_	proving the grain yield		C			
	Α.	Hinosan	B.	Fongorene			
	C.	Tricyclazole	D.	Propiconazole			
22.	Udbatta	a disease of rice can be effective	ly contr	•			
	in hot v		•				
	A.	40-44°C for 10 mins	B.	50-54°C for 10 mins			
	C.	40-44°C for 15 mins	D.	50-54°C for 15 mins			

23. Which of the following is a <i>Fusarium</i> wilt resistant muskmelon rootstock			tant muskmelon rootstock			
	A. K	urodane	B.	LS89		
	C. S	hiko No1	D.	Shirokikuza		
<i>24</i> .	Dactylell	a bembicoides is a predatory f	fungus 1	used to control		
		yst nematode of soyabean	В.	RKN of pineapple		
	C. G	folden nematode of potato	D.	None		
25.	Pink dise	ase of citrus caused by Botryo	basidii	um salmonicolor is endemic in		
	A. A	runachal Pradesh	B.	Mizoram		
	C. N	leghalaya	D.	Assam		
26.	The potat	o scab pathogen is highly susc	epticle	to the antagonistic effect of		
	A. B	acillus coagulans	B.	Bacillus subtilis		
	C. P	seudomonas azotoformans	D.	Bacillus thuringiensis		
27.	The antib	iotic Kasugamycin was develo	ped fro	m		
	A. S	treptomyces griseus	B.	Streptomyces kayugaensis		
	C. S	treptomyces griseofulvin	D.	Streptomyces scabies		
28.	The antib	iotic Kasugamycin is effective				
	A. F	ungus	В.	Bacteria		
	C. N	Iollicutes	D.	All of the above		
29.	For late b	light of potato, plants are more	suscep	tible at		
	A. V	ery young stage	В.	Vegetative stage		
		lature stage		oth very young and matured stage		
30.	_	outer simulation model for fore	casting			
		PIDEM	В.	EPIVET		
		PIVEN	D.	EPIPIRE		
31.		In India, damage to rice crop due to blast disease is estimated as high as				
		5%	В.	75%		
		5%	D.	95%		
32.		with 2% Carbendazim plus 0.1	_			
		usarium wilt of banana	В.	Moko wilt of banana		
		erticillium wilt of cotton	D.	Bacterial wilt of brinjal		
33.	_	outer simulation model for fore	_			
		OM-CAST	В.	BLIGHT CAST		
		IMCAST	D.	Both b and c		
34.				n for the dynamic phenomenon of		
	_	_	es <i>viz</i> in	iduction, maintenance and release		
	of fungist					
		obbs and Hinson (1953)	В.	Watson and Ford (1972)		
		rown (1987)	D.	Vanderplank (1967)		
<i>35</i> .		um roseum is highly antagoni				
		leloidogyne incognita	B.	Rhizoctonia solani		
	C. A	lternaria alternate	D.	Sclerotinia sclerotiorum		
		Guide book of plant Par	thology	♦ 167		

36. Parasitism of pathogenic fungi by other fungi is generally termed a			is generally termed as			
	A.	Hyperparasitism	В.	Parasitism		
	C.	Mycoparasitism	D.	Multiparasitism		
37.	The b		cy of bioc	ontrol agents in disease management		
	A.	Mutation	В.	Protoplast fusion		
	C.	Genetic engineering	D.	All of the above		
38.	The b	piocontrol agent Agrobacterium	ı radiobad			
	A.	Nogall	B.	Nogall diegall		
	C.	Norbac 84C	D.	NOGALL 84		
39.	The b	piocontrol agent Agrobacterium	ı radiobad			
	A.	Nogall	B.	Nogall diegall		
	C.	Norbac 84C	D.	Galltrol-A		
40.	Samo	oucha and Gisi (1987) advocate	d the use o	of three way mixtures (oxadixyl/		
		ozeb/cymoxanil) to control phe				
		on tomato and	-			
	A.	Alternaria alternata	В.	Phytophthora infestans		
	C.	Plasmopara viticola	D.	Alternaria solani		
41.	The 2	The Xa21 resistance gene that provides resistance against all the races of Xoo is				
	found	lin-				
	A.	Oryza glaberrima	В.	Oryza sativa		
	C.	Oryza longistaminata	D.	Oryza officinalis		
42.	Arize	Arize-Dhani, world's first hybrid variety resistant to <i>Xoo</i> pathovars was released				
	by-					
	A.	Bayer Crop Science	В.	Syngenta		
	C.	DuPont	D.	Monsanto		
43.	'Take	e All' disease of wheat caused	by Gaeun	nannomyces graminis f.sp. tritici		
	can be successfully controlled by rotating wheat with-					
	A.	Rye	В.	Sorghum		
	C.	Oats	D.	Rice		
44.	Disea	Disease free seeds can be used to control diseases caused by-				
	A.	Colletotrichum lindemuthic	anumB.	Xanthomonas phaseoli		
	C.	Pseudomonas phaseolicolo	a D.	All of the above		
45.	Kaoli	in-based films have proven effec	tive in pro	otecting apple shoots from becoming		
	infec	ted with-				
	A.	Erwinia amylovora	В.	Podosphaera leucotricha		
	C.	Both a) and b)	D.	None of the above		
46.	Flood	ling of banana fields is done to c	control-			
	A.	Sigatoka disease	В.	Bunchy top disease		
	C.	Anthracnose	D.	Fusarium wilt		

47.	'Ridg	ing' is a cultural practice used to	reduce	infection in-			
	Α.	Onion	В.	Potato			
	C.	Tomato	D.	Colocasia			
48.	For m		f cotton	caused by Xanthomonas campestris			
		alvacvearum hot water treatmer					
	Α.	56°C for 10 min	В.	54°C for 10 min			
	C.	56°C for 15 min	D.	56°C for 15 min			
49.		se the correct statement-	Δ.	30 C 101 13 IIIII			
.,.	A.		s sudde	nly against fungicides that have a			
		single-site of action.					
	B.	Qualitative resistance is also	called di	screte resistance.			
	C.	Qualitative resistance is seen	with the	use of benzimidazoles and QoI			
		fungicides.					
	D.	All of the above.					
50.	When	a fungus develops resistance ag	gainst on	e member of a fungicide group, it			
	automatically becomes resistance to rest of the fungicide of that group, then it is						
	called	-					
	A.	Qualitative resistance	B.	Multiple resistance			
	C.	Cross resistance	D.	Quantitative resistance			
51.	Appli	cation of cross protection in con-	trolling	virus diseases has met with some			
	succes	success in case of-					
	A.	A. Tomatoes with mild strains of <i>tobacco mosaic virus</i>					
	В.	B. Citrus with mild strains of <i>citrus tristeza virus</i>					
	C.	Papaya with mild strains of	papaya	ring spot virus.			
	D.						
52.	Successful transformation of plants for resistance to virus diseases has been obtained						
	through the use of viral replicase genes, as in the cases of-						
	A. Tomato yellow leaf curl virus and cucumber mosaic virus in tomato						
	В.	Potato leaf roll virus and por		<u>-</u>			
	C.	Both a) and b)	D.	None of the above			
53.		co Mosaic Virus (TMV) is kille		•			
	A.	50°C	В.	60-72 °C			
	C.	80-90 °C	D.				
54.				was transferred into canola, the			
	_	genic canola plants exhibited resi					
	A.	Leptosphaeria maculans	В.	Rhizoctonia solani			
	C.	Sclerotinia sclerotiorum	D.	All of the above			
55.		n of the following is not true abou					
	A.	First isolated from Strobiluru		ellus			
	В.	It interfers with ATP production	on				

	C.	Strobilurin show translaminar movement				
	D.	Strobilurin induce plant defense				
56.	Dimeth	yl sulphate, Nitrous acid, Hydrox	ylamine,	Nitrogen mustard gas, Adenosine		
	aminol	ydrolase for plant viruses are ex-	amples o	of		
	A.	Dehydrating agents	B.	Mutagenic agents		
	C.	Alkylating agents	D.	Dealkalating agents		
57.	Which	of the following insecticide can be	e used fo	or the control of plant virus vectors		
	viz., wł	nitefly, aphid, hoppers, thrips	•			
	A.	Thiamethoxam 25 WG @ 0.2-0	0.25 ml	/ L		
	B.	Acetamiprid 20 SP @ 0.2g / L				
	C.	Dimethoate 30 EC @ 1.25-1.5 to	ml / L			
	D.	Malathion 50 EC @ 1 − 1.5 ml	/ L			
	E.	All of the above				
58.	a)	TVMV	b)	TuMV		
	c)	PVX	d)	PVY		
	e)	TMV				
Match	the resis	stance gene with the pathogen				
	1)	Rx, Nx, Nb	2)	Py		
	3)	Tm1, Tm2,N	4)	TuRB01		
	5)	Va				
	A.	1-a,2-d,3-e,4-b,5-c	B.	1-c,2-a,3-e,4-b,5-d		
	C.	1-c,2-b,3-e,4-d,5-a	D.	1-c,2-d,3-e,4-b,5-a		
59.	Sprayir	ng or dipping the plants with/in mi	lk is a co	ontrol measure that can be used for		
	A.	CMV	B.	TMV		
	C.	CaMV	D.	PVX		
60.		ed spraying of an oil emulsion @				
	chilliar	nd at 2.5% in the field at weekly i				
	A.	Cucumber mosaic virus	B.	Potato virus Y		
	C.	Cauliflower mosaic virus	D.	Both A and B		
61.	In India	a, 2 % groundnut oil is found to b	e effecti	ve for the control of		
	A.	Cucumber mosaic virus	B.	Papaya mosaic virus		
	C.	Cowpea mosaic virus	D.	Both B and C		
62.	A)	PLRV & PYV	B)	CLCuV		
	C)	ICMV	D)	RTV		
	Match	the following				
	1)	Kufrichandramukhi	2)	LR5166		
	3)	Vikramarya	4)	SreeVishakam		
	A.	1-A,2-C,3-D,4-B	B.	1-A,2-B,3-D,4-C		
	C.	1-A,2-C,3-B,4-D	D.	1-A,2-D,3-C,4-B		

Lutrasil LS 10 gives 100% protection against transmission by 63. A. Potato virus X Potato virus Y В. C. Potato leaf roll virus D. Both A and C "Wise production practices" is referred to for 64. Legislative control A. Chemical control В. C. Cultural control Host plant resistance D.

(Footnotes)

CHAPTER 11 PLANT DISEASE CONTROLAND MANAGEMENT

- 1. Ans: A, NorthEastern Region Source: GN Agrios, Plant Pathology, page: 296
- 2. Ans: B, Botrytis and Pernospora tabacina Source: GN Agrios, Plant Pathology, page: 302
- 3. Ans: D, All the above Source: GN Agrios, Plant Pathology, page: 305
- 4. Ans: A, Pasteuria penetrans Source: GN Agrios, Plant Pathology, page: 306
- 5. Ans: C, Meloidogyne spp. Source: GN Agrios, Plant Pathology, page: 308
- 6. Ans: B, Cross Protection Source: GN Agrios, Plant Pathology, page: 314
- 7. Ans: B, Plant Activators Source: GN Agrios, Plant Pathology, page: 316
- 8. Ans: A, Candida Oleophila I-82, Source: GN Agrios, Plant Pathology, page: 338
- 9. Ans: C, Erwinia amylovora Source: GN Agrios, Plant Pathology, page: 339
- 10. Ans: D, Bion WG 50 Source: GN Agrios, Plant Pathology, page: 316
- 11. Ans: A, Amplomyces quisqualis 50 Source: GN Agrios, Plant Pathology, page: 316
- 12. Ans: B, Eicchornia crassipes Source: GN Agrios, Plant Pathology, page: 331
- 13. Ans: D, All of the above Source: GN Agrios, Plant Pathology, page: 324
- 14. Ans: A, Oxycom Source: GN Agrios, Plant Pathology, page: 316
- 15. Ans: A, Lime Source: GN Agrios, Plant Pathology, page: 338
- 16. Ans: D, All of the above Source: GN Agrios, Plant Pathology, page: 338
- 17. Ans: C, Sulphur Source: GN Agrios, Plant Pathology, page: 339
- 18. Ans: B, Quinones Source: GN Agrios, Plant Pathology, page: 339
- 19. Ans: A, Soil Borne Pathogens Source: GN Agrios, Plant Pathology, page: 340
- 20. Ans: D, P. chlororaphils Source: GN Agrios, Plant Pathology, page: 324
- 21. [Ans: C, Tricyclazole Source: Crop Protection, Management Strategies; Author: D. Prasad; Page No: 271]
- 22. [Ans: B, 50-54 C for 10 mins Source: Crop Protection, Management Strategies; Author: D. Prasad; Page No: 185]
- 23. [Ans: B, LS89 Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 466]
- 24. [Ans: B, RKN of Pineapple Source: Modern Plant Pathology; Author: H C Dube; Page No: 260]
- 25. [Ans: C, Meghalaya Source: Crop Protection, Management Strategies; Author: D. Prasad; Page No: 198]

- 26. [Ans: B, Bacillus subtilis Source: Plant Diseases; Author: R.S. Singh; Page No: 93]
- 27. [Ans: B, Streptomyces kayugaensis Source: Crop Protection, Management Strategies; Author: D. Prasad; Page No: 268]
- 28. [Ans: A, Fungus Source: Crop Protection, Management Strategies; Author: D. Prasad; Page No: 268]
- 29. [Ans: D, Both very young and matured stage Source: Plant Diseases; Author: R.S. Singh; Page No: 148]
- 30. [Ans: C, Epiven Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 183]
- 31. [Ans: B, 75% Source: Plant Diseases; Author: R.S. Singh; Page No: 414]
- 32. [Ans: A, Fusarium wilt of banana, Source: Plant Diseases; Author: R.S. Singh; Page No: 468]
- 33. [Ans: D, Both b and C Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 185]
- 34. [Ans: B, Watson and Ford Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 239]
- 35. [Ans: D, Sclerotinia sclerotiorum Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 242]
- 36. [Ans: C, Mycoparasitism Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 243]
- 37. [Ans: D, All of the above Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 250]
- 38. [Ans: C, Norbac 84C Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 255]
- 39. [Ans: D, Galltrol-A Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 255]
- 40. [Ans: B, Phytopthora infestans Source: Crop Diseases and Their Management; Author: Chaube & Pundhir; Page No: 310]
- 41. [Ans.(c). Oryza longistaminata Source-Modern Plant Pathology by H.C. Dube.Chapter-21-Leaf Spots and Blights. Disease Resistance II: Defense, page-305]
- 42. [Ans.(a). Bayer Crop Science Source-Modern Plant Pathology by H.C. Dube.Chapter-21-Leaf Spots and Blights, page-306]
- 43. [Ans.(c). Oats Source-Modern Plant Pathology by H.C. Dube.Chapter-18-Plant Disease Management (Plant Disease Control) I: Prevention, page-252]
- 44. [Ans.(d). All the above Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-296]
- 45. [Ans.(c). Both A and B Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-299]

- 46. [Ans.(d). Fusarium wilt Source-Modern Plant Pathology by H.C. Dube.Chapter-18-Plant Disease Management (Plant Disease Control) I: Prevention, page-253]
- 47. [Ans.(b). Potato Source-Modern Plant Pathology by H.C. Dube.Chapter-21-Leaf Spots and Blights, page-319]
- 48. [Ans.(a). 56C for 10 mins Source-Modern Plant Pathology by H.C. Dube.Chapter-21-Leaf Spots and Blights, page-312]
- 49. [Ans.(d). All the above Source-Modern Plant Pathology by H.C. Dube.Chapter-19-Plant Disease Management (Plant Disease Control) II: Cure, page-276]
- 50. [Ans.(c). Cross Resistance Source-Modern Plant Pathology by H.C. Dube.Chapter-19-Plant Disease Management (Plant Disease Control) II: Cure, page-277]
- 51. [Ans.(d). All the above Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-315]
- 52. [Ans.(d). None of the above Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-320]
- 53. [Ans.(d). 95-100C Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-310]
- 54. [Ans.(d). All the above Source-Plant Pathology by G. N. Agrios. Chapter-9-Control of Plant Diseases, page-319]
- 55. [Ans.(d). Strobilurin induce plant defence Source-Modern Plant Pathology by H.C. Dube.Chapter-19-Plant Disease Management (Plant Disease Control) II: Cure, page-274]
- 56. (Ans: B, Mutagenic Agents Source: Elements of plant virology, Page 65)
- 57. (Ans: E, All the above Source: Elements of plant virology, Page 207)
- 58. (Ans: D, 1-C, 2-D, 3-C, 4-B, 5-A Source: Elements of plant virology, Page 210)
- 59. (**Ans: D**, PVX Source: G.N.Agrios, 758)
- 60. (Ans: B, PVY Source: Elements of plant virology, Page 206)
- 61. (Ans: D, BOTH B and C Source: Elements of plant virology, Page 206)
- 62. (Ans: D, RTV Source: Elements of plant virology, Page 211)
- 63. (Ans: D, Both a and C Source: Elements of plant virology, Page 222)
- 64. (Ans: C, Cultural Control Source: Elements of plant virology, Page 198)

CHAPTER 12

LABORATORY TECHNIQUES IN PLANT PATHOLOGY

1.	In	serological detection techn	nique, tl	he antibodies and antigens			
	are m	ixed in solution in tubes or in drops on a pe	etri disł	1.			
	A.	Gel diffusion test	B.	Precipitin test			
	C.	Agglutination reaction test	D.	Both a and c			
2.	The a	ntiserum of the animal to which antigen is	injecte	ed contains			
	A.	Monoclonal antibodies	B.	Polyclonal antibodies			
	C.	Both a and b	D.	None of the above			
3.	In hył	oridoma technology, the antibody producing					
		duce monoclonal antibodies.					
	A.	Mouse myeloma cell	В.	Rabbit RBC			
	C.	Both a and b	D.	None of the above			
4.	In	ELISA the antibodies are	added f	irst.			
	A.	Direct ELISA	В.	Indirect ELISA			
	C.	Both and b	D.	None of the above			
5.	is another serological technique used for finding a virus presen						
	in very low concentrations						
	A.	Immunosorbent electron microscopy	В.	ELISA			
	C.	Immunofluorescent staining technique	D.	Both A and C			
6.	Whic	Which dye is used in immunofluorescent staining technique?					
	A.	Ethidium bromide Fluorescein isothiocyanate	В.	SYBR green dye			
	C.	Fluorescein isothiocyanate	D.	Lactophenol cotton blue			
7.	is used to detect and quantify cDNA-RNA or cDNA-DNA hybrids						
		Autoradiography					
	В.	Liquid scintillation technique					
	C.	Electrophoresis	D.	Both A and B			
8.		works on the principle of moist heat sterilization					
	A.	Hot air oven	В.	Laminar air flow			
	C.	Autoclave	D.	None of the above			
9.	The t	emperature required for dry heat sterilizat	ion is	for 1			
	hour	exposure.					
	A.	180 degrees	В.	120 degrees			
	C.	160 degrees	D.	100 degrees			

Guide book of plant Pathology ♦ 175

10	D 1			0
10.		eat sterilization kills microbes by		
	A. C.	Coagulating and denaturing of enzymes		
11		Both a and b	D.	
11.		heat sterilization kills microbes by		
	A.	Coagulating and denaturing of enzymes		
10	C.	Both a and b	D.	
12.		autoclaves and pressure cookers operate		, at which the
mınım		ing period for sterilization is		150 m C 5 minutes
	A.	1 ,		150 p C, 5 minutes
12	C.	1 /	D.	180p C, 1 hour
13.		is used to obtain mono		
		Water agar	B.	Potato dextrose agar
1.4	C.	\mathcal{E}	D.	V-8 agar
14.		llin is effective against		
	A.	Gram positive bacteria	B.	Gram negative bacteria
1.5	C.	Both A and B	D.	None of the above
15.	-	omycin is effective against which bacteria		
	A.	Gram positive bacteria	В.	Gram negative bacteria
	C.	Both A and B	D.	None of the above
16.	-	ycin is effective against which bacteria?	_	
	A.	1	В.	Gram negative bacteria
	C.	Both A and B	D.	None of the above
17.		imphenicol is active against which bacteris		
	A.	Gram positive bacteria	В.	Gram negative bacteria
	C.	Both A and B	D.	None of the above
18.		H solubility test, if a mucoid thread can be	with the	e loop it
	A.	Gram positive bacteria	В.	Gram negative bacteria
	C.	Both A and B	D.	None of the above
19.		istifier technique for nematode extraction		-
	A.		В.	Baermann
	C.	Alwine	D.	Christian
20.		s can be determined by?		
	A.	Return polyacrylamide gel electrophores		
	В.	Reverse transcription polymerase chain	reaction	
	C.	Real time PCR	D.	All of the above
21.	What i	s the sensitivity of PCR?		
	A.	1-10 ng/ml	B.	1-10 mg/ml
	C.	1-10 ug/ml	D.	1-10 pg/ml

22.	Whic	ch stain is used to know the presence	e of MLOs?			
	Α.	Bromophenol blue	В.	SYBR green		
	C.	Ethidium bromide	D.	Dienes stain		
23.		is used to determine the				
	Α.	Fluorescein diacetate assay	В.	Dienes stain		
	C.	Both A and B	D.	None of the above		
24.		ch enzyme is used for tagging antibod				
2	A.	Alkaline phosphatase	В.	Horseradish peroxidase		
	C.	Both A and B	D.	None of the above		
25.		ELISA involves antibod	2.			
20.	Α.	DAS ELISA	В.	DAC ELISA		
		PTA ELISA	D.	TAS ELISA		
26.		BIA is used as so	2.			
20.		ens and antibodies.	na support for	i illimoonization of both the		
	A.	Nitrocellulose membrane	В.	Polyvinylidene difluoride		
	л. С.	Whatman filter paper	D.	Both A and B		
27.						
21.	Which type of PCR allows simultaneous detection of viruses, phytoplasma and nematodes?					
	A.	Real time PCR	В.	Singleplex PCR		
	C.	Nested PCR	D.	Multiplex PCR		
28.	Whic	Which PCR is used for the detection of viable plant pathogens?				
	A.	Bio PCR	В.	Real time PCR		
	C.	Gradient PCR	D.	Multiplex PCR		
29.		is a promising tool for	or enhanceme	nt of detection of plant		
	pathogens and revealing the point mutations in the wild types of causative agents.					
	Â.	Polymerase Chain reaction	В.	Ligase Chain reaction		
	C.	Nuclear chain reaction	D.	All of the above		
30.	Western blotting is a highly sensitive method for the detection of?					
	A.	DNA	В.	RNA		
	C.	Proteins	D.	None of the above		
31.	The 1	The relation between time required for sterilization and temperature required is				
	A.	Directly proportional 1	В.	Inversely proportional		
	C.	No relation	D.	None of the above		
32.		ch type of heat requires higher tempe				
	Α.	Dry heat	В.	Moist heat		
	C.	Flame heat	D.	Both A and B		
33.		emission of NUV fluorescent lamp	٠.			
J	A.	583 nm	В.	280 nm		
	C.	360 nm	D.	300 nm		
	\sim .		ν.	2 3 0 11111		

34.	Imm	unosorbent assay plates are made of						
	A.	Plastic	В.	Polystyrene				
	C.	Polyvinyl	D.	Polypropylene				
35.	Syno	onym of dot blot		31 13				
	Å.	Microarray	В.	Macroarray				
	C.	Molecular beacon		·				
	D.	NASH (Nucleic acid Spot Hybridization	on)					
36.	How	How is dot blot visualized?						
	A.	Naked eye						
	В.	Gel documentation system						
	C.	Microscopy						
	D.	UV spectrophotometer						
37.	Mate	ch correctly the selective media						
	a)	Rhizoctonia	i.	Nash and Synder media				
	b)	Fusarium	ii.	MacConkey Agar				
	c)	Gram negative bacteria	iii.	Mannitol salt Agar				
	ď)	Gram positive bacteria	iv.	Thiophanate methyl agar				
	Á.	a - iii; b - ii; c - iv; d - i		1 , 3				
	В.	a - iv; $b - i$; $c - ii$; $d - iii$						
	C.	a-i; $b-ii$; $c-iii$; $d-iv$						
	D.	a - ii; $b - iv$; $c - i$; $d - iii$						
38.		Single molecule sequencing is also called						
	Α.	1st generation sequencing						
	В.	2nd generation sequencing						
	C.	3rd generation sequencing						
	D.	4th generation sequencing						
39.	NASBA (Nucleic acid sequence-based amplification) amplifies							
	A.	DNA	B.	RNA				
	C.	Both DNA and RNA	D.	None				
40.		Main genetic marker of fungi						
		A. ITS	B.	IGS				
		C. RAPD	D.	COI				
41.	Most commonly used blocking solution in Western blotting							
	A.	Tween 20		8				
	В.	Phenylmethylsulfonyl fluoride (PMSF)						
	C.	Bovine serum albumin (BSA)						
	D.	Non- fat dried milk						
42.		tives used in electron microscope						
	A.	Glutaraldehyde	В.	Paraformaldehyde				
	C.	Osmium tetraoxide	D.	All of the above				

43.		Short term preservation maintain	ns the culture f	or			
	A.	6 months	В.	9 months			
	C.	1 year	D.	1 month			
44.		Silica gel method of preservation	n is mainly use	d for			
	A.	Bacteria	B.	Sporulating fungi			
	C.	Soil fungi	D.	Sclerotized fungi			
45.		Examples of cryoprotectants		C			
	A.	Glycerol (10–15%) and dimethy	l sulfoxide (5%	5)			
	В.	Ethanol	C.	Tween 80			
	D.	Sodium hydroxide					
46.		Which of the following is not tru	e about dry hea	at sterilization?			
	A.	Dry heat is an oxidation process					
	В.	Sterilization takes place from the		nding the object			
	C.	Many bacteria in desiccated veg					
	D.	Heat conduction by dry heat is s					
47.	The r	najor advantage of jacketed types					
	A.	* * * * * * * * * * * * * * * * * * * *					
	В.	B) Condensation of moisture on	-	ere			
	C.	Both (a) & (b)	D.	None of the above			
48.	Auto	claving may result in					
	A.	Change in the pH OF the media	sterilized				
	В.	Partial hydrolysis of carbohydra	tes in culture m	nedia			
	C.	Change in nature of proteins					
	D.	All the above					
49.	Whic	Which of the following filters may shed fibres or alkalis during filter sterilization?					
	A.	Asbestos filters	В.	Sintered glass filters			
	C.	Membrane filters	D.	None of the above			
50.	Whic	Which of the following gases are used for sterilization of plant materials to be used					
	in me	dia?					
A.	Propy	ylene oxide	В.	Carbon dioxide			
C.	Nitro	gen dioxide	D.	All the above			
51.	pH of	f the culture media is generally adju	usted?				
	A.	Before autoclaving	B.	After autoclaving			
	C.	After autoclaving and cooling	D.	None of the above			
52.	Whic	h of the following methods can be u	used to induce s	sporulation in			
	Helm	inthosporium and alternaria					
	A.	Filter paper method	B.	Grass -leaf method			
	C.	Both A and B	D.	None of the above			
53.	Whic	h of the following is a valid method	l of storing fung	gi for long term?			
	A.	Storing under mineral oil	В.	Storing in sterile water			
	C.	Storing in liquid paraffin	D.	All the above			
		Guide book of plant Pa	thology ♦ 179)			

54.	Whic	th of the following act as cryoprotecta	ant for storing	g fungal culture in Liquid			
		nitrogen?					
	A.	Dimethyl sulfoxide	В.	10 % glycerol			
	C.	Both A and B	D.	None of the above			
55.							
		In phase contrast microscope the bacteria can be visualized without staining because of the differences in thebetween bacterial cell and surrounding medium?					
	A.	Refractive index	В.	Numerical aperture			
	C.	Transparency	D.	Consistency			
56.		The resolution limit of a light microscope using visible light is above?					
	Α.	200 nm	В.	300nm			
	C.	400nm	D.	600 nm			
57.		o titre plate is used for which of the fo					
	Α.	ISEM	В.	PCR			
	C.	ELISA	D.	None of the above			
58.	Acidi	ic dyes are used to stain basic cell con	nstituents like				
		are used to stain which of the following		• •			
	Α.	Nuclei	В.	Meta chromatic granules			
	C.	Both A and B	D.	None of the above			
59.	The s	The surface of the bacteria is normallycharged, but at lower pH					
		bacteria becomes charged?					
	A.	Negatively, positively	В.	Positively, Negatively			
	C.	Remain same		<i>y,</i> 2			
	D.	None of the above					
60.	A rap	A rapid method of distinguishing Gram positive and negative bacteria using 3%					
	_	KoH was proposed by					
	A.	·	В.	Buell and Weston (1947)			
	C.	Babu <i>et al</i> (1976)	D.	None of the above			
61.	The technique of negative staining for electron microscopy was developed by						
	A.	Kauche and co- worker	В.	Williams and Wycoff (1945)			
	C.	Brenner and Home (1959)	D.	Brakke (1951)			
62.	Who developed meristem tip culture technique for obtaining virus free planting						
	materials?						
	A.	Morel and Martin (1952)	В.	Williams and Wycoff (1945)			
	C.	Brenner and Home (1959)	D.	Kassanis (1954)			
63.	Observation of soil microorganism's insitu can be done by?						
	A.	Fluorescence microscopy	B.	Stage microscopy			
	C.	Both A and B	D.	None of the above			
64.	Fungicide evaluation can be done by?						
	A.	Spore germination test	В.	Poison food technique			
	C.	Disc impregnation method	D.	All the above			

65.	Which of the following solutions are used for soil -less cultivation of plants in					
	labora	•	ъ.	37.11.15.15		
	A.	Hoagland solutions	В.	Nutrient Broth		
	C.	Oagland solution	D.	None of the above		
66.		h of the following equipment is used for co	ontinuou	is culturing micro organisms		
	_	owth phase ?	_			
	A.	Turbidostat	В.	BOD incubator		
	C.	Environment chamber	D.	Hygrochamber		
67.		h of the following detection techniques g	ives the	quantitative value of the		
	patho	pathogen present in the sample?				
	A.	PCR	В.	Real time PCR		
	C.	ELISA	D.	Both A & B		
68.	Whic	h of the following is not used in PCR?				
	A.	Probe	В.	Polymerase		
	C.	Primer	D.	Mgcl2		
69.	Whic	h of the following cannot be detected by	serologi	ical tests?		
	A.	Viroid	В.	Virus		
	C.	Fungi	D.	All the above		
70.	Who	discovered storage of culture under mine	ral oil?			
	A.	Suslow <i>et al.</i> (1982)	В.	Buell and Weston (1947)		
	C.	Babu <i>et al</i> . (1976)	D.	None of the above		
71.	In bri	ght field microscope the microscope field	(the are	a under observation) is ——		
and the microorganism appears—?						
	A.	Bright and dark	В.	Dark and bright		
	C.	Bright and bright	D.	None of the above		
72.	Presence and viability of fungal spore can be determine by –					
	A.	Dienes stain				
	В.	Fluorescein diacetate assay(FDA)				
	C.	Both				
	D.	None of the above				
73.	Which technique used for diagnosis of MLO?					
	A.	Dienes stain				
	B.	Fluorescein diacetate assay(FDA)				
	C.	Both A & B	D.	None of the above		
74.	The technique used for the detection of more than one pathogen present in a particular					
	plant and soil sample in a single assay is					
	A.	Multiplex PCR	В.	Real time PCR		
	C.	Microarray based technique	D.	All of the above		

75.	The P	CR based method in which a	ntibody is u	sed for			
	A.	RFLP		В.	RAPD		
	C.	Immune capture PCR		D.	ISEM		
76.		The diagnostic test used for identification of gram positive and gram negative bacteria is?					
	A.	Gram staining process		В.	3% KOH reaction		
	C.	Kind of enzyme produced		D.	Both A & B		
77.	Serolo	ogical test in not used in detec	tion of				
	A.	Virus		В.	Bacteria		
	C.	Fungus		D.	Viroid		
78.	The method used for detection of viroid						
	A.	R-PAGE		В.	RT-PCR		
	C.	Temperature gradient gel e	lectrophore	sis			
	D.	All of the above	•				
79.	Rever	se transcription RT-PCR suc	cessfully de	etect the	e presence of		
	A.	Virus	·	B.	Viroid		
	C.	Viruliferous Vector		D.	All of the above		
80.	Most	Most common enzyme for tagging antibody used in ELISA					
	A.	Horseradish peroxidase (H	IRPO)	B.	Alkaline phosphatase (AP)		
	C.	Both A & B		D.	Not mention above		
81.	Match	the following					
	MICI	ROSCOPE	M	AXIMU	JM MAGNIFICATION		
	A.Dis	ssecting microscope	1)	10000-1	.000000X		
	B.Flu	orescent microscope	2):	500000-	-1000000X		
	C.TE	M	3)	1500X			
	D.SE	M	4)	10-50X			
82.	Pure o	culture of bacteria can be obt	ained by?				
	A.	Streak plat technique	В.	Singl	le spore isolation method		
	C.	Pour plat technique	D.	Both	A & C		
83.	What is the	ne pH requirement of fungus?	?				
	A.	6.0-6.5		В.	7.0		
	C.	8.0		D.	4.5-5.5		
84.	What is th	e most common absorbance	or reading t	aken fro	om ELISA?		
	A.	400nm		В.	405nm		
	C.	410nm		D.	415nm		
85.	What is th	ne most commonly used buffe	er in electro	phoresi	s?		
	A.	Tris acetate EDTA		В.	Tris acetate borate		
	C.	Agaragar		D.	Both A & B		
86.	Most suita	able size of membrane filter for	or filter steri	ilizatior	n is?		
	A.	0.11micron		В.	0.22 micron		
	C.	0.33 micron		D.	0.44 micron		
		Guide book of pla	nt Pathology	· ♦ 18	32		

87. Statement 1: lactophenol cotton blue has three components						
		nent 2:- phenol kill living organism				
		nent 3:-lactic acid preserve fungal structu	re			
	Statem	nent 4:- stain chitin in the fungal cell wall				
	A.	All the statement are true				
	B.	Only statement 1& 2 are true				
	C.	Only statement 3& 4 are true				
	D.	All of them are incorrect				
88.	Wester	rn blotting term is given by?				
	A.	Clark and adams	В.	Twobin		
	C.	Burnett	D.	None of the above		
89.	What a	are the annealing and denaturation temporare	erature ii	n PCR?		
	A.	50 degree & 90 degree	В.	55 degree & 95 degree		
	C.	80 degree & 100 degree	D.	30 degree & 70 degree		
90.	RT PC	R useful for detection of?				
	A.	DNA virus	B.	RNA virus		
	C.	Both A and B	D.	Fungus		
91.	Which	disease caused by low temperature?		C		
	A.	Russetting of apple fruit				
	B.	Cracking and peeling of bark				
	C.	Late frost tip necrosis	D.	All of the above		
92.	What are the diseases caused by high temperature?					
	A.	Sunsclad on flashy fruit	B.	Water core of the apple		
	C.	Blossom end rot of citrus	D.	All of the above		
93.	Black heart of potato caused by?					
	A.	Low oxygen	В.	High temperature		
	C.	Both A & B	D.	Pathogen		
94.	Which	causes silver leaf of plant?		3		
	A.	Ethylene	В.	Peroxyacyl nitrate(PAN)		
	C.	Both A and B	D.	Mustard gas		
95.	Which is the most toxic pollutant for plant and its tolerance level?					
	A.	PAN at 1.3 ppm				
	В.	Hydrogen fluoride at 1.00ppm				
	C.	Ozone at 0.1-0.3 ppm	D.	All of them		
96.		disease caused by				
	A.	B deficiency	B.	Zn deficiency		
	C.	Cu deficiency	D.	S deficiency		
97. Buttoning of cauliflower caused by						
	A.	Zn deficiency	B.	N deficiency		
	C.	B deficiency	D.	Ca deficiency		
		J	•	J		

98.	Hollo	Hollow stem of cauliflower caused by					
	A.	Zn deficiency	В.	N deficiency			
	C.	B deficiency	D.	Ca deficiency			
99.	Top sickness of tobacco caused by						
	A.	Zn deficiency	B.	N deficiency			
	C.	B deficiency	D.	Ca deficiency			
100.	Sand drawn disease of tobacco caused by						
	A.	B deficiency	B.	Mn deficiency			
	C.	Mg deficiency	D.	Ca deficiency			
101.	Sulphur toxicity caused the disease						
	A.	Cotton rust	В.	Red leaf of onion			
	C.	Pansukh disease of rice	D.	None of the above			
102.	Whit	e tip of maize caused by					
	A.	Zn deficiency	B.	B deficiency			
	C.	N deficiency	D.	None of them are correct			
103.	Which is the trap crop for broomrape?						
	A.	Marigold	В.	Flex			
	C.	Mustard	D.	None of the above			
104.	The sensitivity of ELISA can be enhanced by						
	A.	Steptavidin-biotin system					
	В.	Conjugate with luciferase and flurescent substrate					
	C.	Luciferin(florescent ELISA)					
	D.	All of the above					
105.	Which of the following true about electron microscopy?						
	A.						
	В.	Image is obtained in phosphorescent screen					
	C.	Electron beam must pass through the vacuum chamber					
	D.	All of the above					
106.	Degree of scattering in transmission electron microscope is a function of?						
	A.	ϵ					
	В.						
	C.	1					
	D.	Mass of the electron lies in the path					
107.	Negative staining is used for examining?						
	A.	Virus particle	В.	Protein molecule			
	C.	Bacteria flagella	D.	All of the above			
108.	Which among them getting three dimensional picture of the specimen?						
	A.	1					
	В.	Scanning electron microscope					
	C.	Compound microscope					
	D.	Simple microscope					
		Guide book of plant Patholo	gy ♦ 18	4			

109.	The secondary electron radiated back in scanning microscope is collected by					
109.	A.	Specimen	B.	Anode		
	C.	Vacuum chamber	Б. D.	Cathode		
110.						
110.		do we obtained obtain the magnified ima	_	-		
	A.	Cathode ray tube	В.	Anode		
111	C.	Scanning generator	D.	Phosphorescent screen		
111.	Which of the following technique are used in TEM for observation of the cell structure?					
	A.	Negative screening	В.	Shadow casting		
	C.	Ultrathin sectioning	D.	All of the above		
112.		is the best microscope for observation of				
112.	A.	Simple microscope	B.	SEM		
	C.	TEM	Δ.	SEIVI		
	D.	Phase contrast microscope				
113.		ength of UV light used in the laminar air	flow			
115.	A.	100nm-200nm	В.	210-300nm		
	C.	310-400nm	D.	410-500nm		
114.		is the common source of nitrogen in the				
	A.	Sugar	В.	Agar		
	C.	Ammonium sulphate	D.	Beef extract		
115.		Edema appears as numerous small bumps on the lower side of leaves or on stems				
	caused by					
	A.	Excess temperature	B.	Excess moisture		
	C.	Excess watering	D.	Both B & C		
116.	Etiolati	ion caused by				
	A.	Excess light	B.	Light deficiency		
	C.	Low temperature	D.	High temperature		
117.	ich concentration?					
	Α.	0.01 PPM	B.	0.05 PPM		
	C.	0.10 PPM	D.	0.20 PPM		
118.	A biochemical technique used mainly in immunology to detect the presence of an					
	antibody or antigen-					
	A.	ELISA	B.	Latex Agglutination test		
	C.	Ouchterlony double diffusion test	D.	None of the above		
119. Fl		nt dyes used in staining cells of seed born	ne plant v	virus-		
	A.	Acridine orange	В.	Glycine		
	C.	Methyl blue	D.	None of the above		
120. Pr	oteins w	vith an immune response produced by cel	ls found	in lymphatic tissues-		
	A.	IgM	B.	IgG		
	C.	Acridine orange	D.	None of the above		
		0				

CHAPTER 12

LABORATORY TECHNIQUES IN PLANT PATHOLOGY

- 1. Ans. B. Precipitin test (page-745, G.N. Agrios, 5thedition)
- 2. Ans. B. Polyclonal antibodies (page-744, G.N. Agrios, 5th edition)
- 3. Ans. A. Mouse myeloma cell (page-744, G.N. Agrios, 5th edition)
- 4. Ans. A. Direct ELISA (page-746, G.N. Agrios, 5th edition)
- **5. Ans. D**. Both a and c (page- 747, G.N. Agrios, 5th edition)
- **6. Ans.** C. Fluorescein isothiocyanate (page-747, G.N. Agrios, 5th edition)
- 7. Ans. D. Both a and b (page- 752, G.N. Agrios, 5th edition)
- **8.** Ans. C. Both a and b (page- 752, G.N. Agrios, 5th edition)
- 9. Ans. A. 180 degrees (page- 7, Plant disease diagnosis, Sileshi)
- 10. Ans. B. Oxidation (page-7, Plant disease diagnosis, Sileshi)
- **11. Ans. A.** Coagulating and denaturing of enzymes (page- 7, Plant disease diagnosis, Sileshi)
- 12. Ans. C. 121p C, 15 minutes (page-7, Plant disease diagnosis, Sileshi)
- 13. Ans. A. Water agar (page- 13, Plant disease diagnosis, Sileshi)
- **14. Ans.** A. Gram positive bacteria (page- 17, Plant disease diagnosis, Sileshi)
- 15. Ans. B. Gram negative bacteria (page- 17, Plant disease diagnosis, Sileshi)
- **16. Ans.** A. gram positive bacteria (page- 17, Plant disease diagnosis, Sileshi)
- 17. Ans. C. Both a and b (page-17, Plant disease diagnosis, Sileshi)
- **18.** Ans- B. Gram negative bacteria (page- 27, Plant disease diagnosis, Sileshi)
- 19. Ans. A. Seinhorst (page-29, Plant disease diagnosis, Sileshi)
- **20. Ans. D**. All of the above (page-2, Plant pathology, M.K. Yadav)
- 21. Ans- D. 1-10 pg/ml (page- 4, Plant pathology, M.K. Yadav)
- 22. Ans. D. Dienes stain (page- 42, Plant Pathology, Mann, Kashyap, Kang)
- **23. Ans. A.** Fluorescein diacetate assay (page- 42, Plant Pathology, Mann, Kashyap, Kang)
- **24. Ans.** C. Both a and b (page- 43, Plant Pathology, Mann, Kashyap, Kang)
- **25. Ans. D.** TAS ELISA (page- 43, Plant Pathology, Mann, Kashyap, Kang)
- **26.** Ans. C. Both a and b (page- 44, Plant Pathology, Mann, Kashyap, Kang)
- 27. Ans. D. Multiplex PCR (page- 45, Plant Pathology, Mann, Kashyap, Kang)
- 28. Ans. A. Bio PCR (page- 45, Plant Pathology, Mann, Kashyap, Kang)
- **29. Ans. B.** Ligase Chain Reaction (page- 45, Plant Pathology, Mann, Kashyap, Kang)

- **30.** Ans. C. Proteins (page- 44, Plant Pathology, Mann, Kashyap, Kang)
- **31. Ans. B.** Inversely proportional (Source: JB, Sinclair and OD, Dhingra, Basic Plant Pathology Methods, page: 2)
- 32. **Ans. A**. Dry heat (Source: JB, Sinclair and OD, Dhingra, Basic Plant Pathology Methods, page: 2)
- **33. Ans.** C. 360 nm (Source: JB, Sinclair and OD, Dhingra, Basic Plant Pathology Methods, page: 14)
- **34. Ans. B.** Polystyrene (Source: Clark, Immunosorbent Assays in Plant Pathology, Ann. Rev. Phytopathol., 1981, page: 87)
- **35. Ans. D**. NASH
- 36. Ans. A. Naked eye
- 37. Ans. B.
- **38. Ans.** C. 3rd Generation sequencing (Source: L. Chalupowicz *et al.*, Diagnosis of plant diseases using the Nanopore sequencing platform, Plant Pathol., 2019, page 1)
- **39. Ans. B.** RNA (Source: L. Chalupowicz *et al.*, Diagnosis of plant diseases using the Nanopore sequencing platform, Plant Pathol., 2019, page 6)
- **40. Ans. A.** ITS (Source: A Khakimov et al., Traditional and current-prospective methods of agricultural plant diseases detection: A review, IOP Conf. Ser.: Earth Environ. Sci. 2022, page: 7)
- **41. Ans. D.** Non-fat dried milk (Source: SA, Brooks and U, Schumacher, SDS PAGE and Western Blotting Techniques, Metastasis Research Protocols, 2001, page-147)
- **42. Ans. D**. All the above (Source: GE Palade, A study of fixation for electron microscopy. The Journal of experimental medicine, 1952, page-285)
- **43. Ans.** C. 1 year (Source: KK Nakasone *et al.* Preservation and distribution of fungal cultures. Biodiversity of fungi: inventory and monitoring methods. Amsterdam: Elsevier Academic Press, 2004: Page: 38)
- **44. Ans. B.** Sporulating fungi (Source: KK Nakasone *et al.* Preservation and distribution of fungal cultures. Biodiversity of fungi: inventory and monitoring methods. Amsterdam: Elsevier Academic Press, 2004: Page: 40)
- **45. Ans. A.** Glycerol (10-15%) and dimethyl sulfoxide (5%) (Source: O. Prakash *et al.*, Practice and prospects of microbial preservation. *FEMS microbiology letters*, 2013, Page: 3)
- **46. Ans. B.** Sterilization takes place from the hot air surrounding the object (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 87)
- **Ans. D.** None of the above (Source: Laboratory techniques, Darshan & Gurvi red pg no :- 88)
- **48. Ans. D.** All the above (Source: Laboratory techniques, Darshan & Gurvi reddy pg no:-88)

- **49. Ans. A.** Asbestos filters (Source: Laboratory techniques ,Darshan &Gurvi reddy pg no :-90)
- **50. Ans. A.** Propylene oxide (Source: Laboratory techniques, Darshan & Gurvi reddy pg no:-93)
- **51. Ans. A.** Before autoclaving (Source: Laboratory techniques, Darshan & Gurvi reddy pg no:-97)
- **52. Ans.** C. Both A and B (Source: Laboratory techniques, Darshan &Gurvi reddy pg no: -200)
- **Ans. D.** All the above (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 206)
- **54. Ans. D.** None of the above (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 288)
- 55. **Ans. A.** Refractive index (Source: Laboratory techniques Darshan &Gurvi reddy pg no: -289)
- **56. Ans. A.** 200 nm (Source: Laboratory techniques, Darshan &Gurvi reddy pg no: -300)
- **Ans. C.** ELISA (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 310)
- 58. **Ans. C.** Both A and B (Source: Laboratory techniques, Darshan &Gurvi reddy pg no:-260)
- 59. **Ans. A.** Negatively, positively (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 261)
- **60. Ans. B.** Buell and Weston (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 263)
- 61. **Ans. C.** Williams and Wycoff (1945) (Source: Laboratory techniques, Darshan &Gurvi reddy pg no:-270)
- **62. Ans. A.** Morel and Martin (Source: Laboratory techniques, Darshan & Gurvi reddy pg no: -303)
- **63. Ans. A.** Florescence microscopy (Source: Laboratory techniques, Darshan & Gurvi reddy pg no: -310)
- **Ans. D.** All the above (Source: Laboratory techniques, Darshan & Gurvi reddy pg no: -321)
- **65. Ans. A.** Hogland solutions (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 370)
- **66. Ans. B.** BOD incubator (Source: Laboratory techniques, Darshan &Gurvi reddy pg no:-10)
- **Ans. B.** Real time PCR (Source: Laboratory techniques, Darshan &Gurvi reddy pg no:-301)
- **68. Ans. A.** Probe (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 310)

- **69. Ans. A.** Viroid (Source: Laboratory techniques, Darshan & Gurvi reddy pg no: -390)
- **70. Ans. B.** Buell and Weston (1947) (Source: Laboratory techniques, Darshan & Gurvi reddy pg no :- 280)
- 71. Ans. A. Bright and Dark
- **72. Ans. B.** Florescencein diacetate assay (FDA) (Source: A competitive vision of plant pathology page no-42)
- 73. Ans. A. Dienes stain (Source: A competitive vision of plant pathology page no-42)
- 74. Ans. D. All the above (Source: A competitive vision of plant pathology page no-51)
- **75. Ans.** C. Immune capture PCR (Source: A competitive vision of plant pathology page no-51)
- **76. Ans. D.** Both A and B
- 77. Ans. D. Viroid
- **78. Ans. D.** All the above
- 79. Ans. D. All the above (Source: A competitive vision of plant pathology page no-53)
- **80. Ans. C.** Both A and B
- 81. Ans. A-4, B-3, C-1, D-2
- **82. Ans. D.** Both A and C (Source: Plant pathology for competitive exam page no-2)
- 83. Ans. A. 6.0-6.5 (Source: Plant pathology for competitive exam page no-2)
- **84. Ans. B**. 405nm
- **85. Ans. D.** Both A and B (Source: Plant pathology for competitive exam page no-4)
- **86. Ans. B.** 0.22 micron (Source: Plant pathology for competitive exam page no-4)
- **87. Ans. A.** All of them are true
- **88. Ans. C.** Burnett (Source: Plant pathology for competitive exam page no-8)
- **89. Ans. B**. 55p C and 95p C
- 90. Ans. C. Both A and B
- **91. Ans. D**. All of the above (Source: plant pathology for competitive exam, 228)
- **92. Ans. D**. All the above (Source: plant pathology for competitive exam, 228)
- **93. Ans. C.** Both A and B
- **94. Ans. B.** Peroxyacyl nitrate (PAN)
- **95. Ans. C.** Ozone at 0.1 -0.3 ppm (Source: plant pathology for competitive exam, 228)
- **96. Ans. B.** Zn deficiency
- **97. Ans. B.** N deficiency
- **98. Ans. C.** B deficiency
- 99. Ans. C. B deficiency
- 100. Ans. C. Mg deficiency
- 101. Ans. C. Pansukh disease of rice
- 102. Ans. A. Zn deficiency
- **103.** Ans. B. Flex (Source: plant pathology competitive version, 231)
- **104.** Ans. D. All the above (Source: plant pathology competitive vision)

- 105. Ans. D. All the above
- 106. Ans. C. No. and mass of the atom that lies in the electron path
- 107. Ans. D. All the above
- 108. Ans. B. Scanning electron microscope
- 109. Ans. B. Anode
- 110. Ans. A. Cathode ray tube
- 111. Ans. D. All the above
- 112. Ans. D. Phase contrast microscope
- **113. Ans. B**. 210-300 nm
- 114. Ans. C. Ammonium sulphate (Source: plant pathology a competitive vision, 175)
- 115. Ans. D. Both B and C (Source: GN agrios page no- 367)
- 116. Ans. B. Light defdiciency (Source: GN agrios page no -368)
- **117. Ans. B**. 0.05 ppm (Source: GN AGRIOS page no-369)
- **118. Ans. A.** ELISA (page no.-279)
- **119. Ans. A.** Acridine orange (page no.-279)
- **120. Ans. B**. IgM (page no.-83)