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Abstract 

Flood forecasting is only part of more comprehensive water resources management activities 
which relate to flood warning, flood control or reservoir operation. This paper focuses on the 
computational aspect of flood forecasting on middle sized catchments. Flood forecasting is a 
daunting issue in hydrology. Structural solutions are mainly preventative and focusing on 
curtailing the magnitude of floods using different methods such as dams, embankment, 
compound channels, widening of river beds, etc. However these solutions have adverse 
environmental, hydrologic, ecologic or economic consequences. The non-structural 
mitigating measure places people away from flood. This method is designed to reduce the 
impact of flooding to society and economy. Rainfall runoff modeling for the flood forecasting 
and warning schemes is a non-structural hydrologic method for mitigating flood damages. 
The relationship between rainfall and runoff is an important parameter for flood forecasting. 
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Introduction 

Flood forecasting is the use of forecasted precipitation and stream flow data in rainfall-runoff 
and stream flow routing models to forecast flow rates and water levels for periods ranging 
from a few hours to days ahead, depending on the size of the watershed or river basin. Flood 
forecasting can also make use of forecasts of precipitation in an attempt to extend the lead-
time available. Flood forecasting is an important component of flood warning, where the 
distinction between the two is that the outcome of flood forecasting is a set of forecast time-
profiles of channel flows or river levels at various locations, while "flood warning" is the task 
of making use of these forecasts to tell decisions on warnings of floods. Real-time flood 
forecasting at regional area can be done within seconds by using the technology of artificial 
neural network. Effective real-time flood forecasting models could be useful for early 
warning and disaster prevention.  
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THE FLOOD FORECASTING SYSTEM  

• Météorological forecasting  

• Rainfall forecasting, nowcasting  

• Quantification and spatialization of rainfalls  

• Discharges/water stages forecasting  

• Flood plains forecasting  

• Message and delivery service/system 

 • Evaluation of the system 

According to the various concepts used in developing models, the models can be classified 
into five categories - 

a) Based on correlation/coaxial diagrams between two variables or even more; 

b) Mathematical equations developed using regression/multiple linear regression 
techniques which combines independent variable with one or more than one variable; 

c) Hydrological models 

c.1 Rainfall run-off model 

i) Lumped 

ii) Quasi-distributed 

iii) Distributed 

 c.2 Routing techniques 

 i)  Lumped, & Distributed 

d) Hydraulic models 

 i) Dynamic Wave routing 

e) Data driven hydrological models 

 i) Artificial Neural Networks 

 ii) Fuzzy expert system design for FF 

 iii) ANFIS (Adaptive Neuro-Fuzzy Inference System) models 

The MINIMAX MODEL  

There is a real danger in only minimizing the “maximum” (extreme floods) without really improving 
the global system and the medium or moderate floods. However, and because of the media coverage, 
this is the actual trend - To find a good compromise between Prevention and Prevision is a real 
challenge. Flood forecasting and warning have to be incorporated within the global flood management 
scheme. 
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FLOOD/WARNING SYSTEMS ARE USERS ORIENTED  

The USERS are both :  

For the scientists, the users are technical Services and institutional bodies : They operate the networks, 
our models, … (all technical systems), and design and deliver appropriate messages to End users (ie 
individuals, citizens, …, nothing to do with technical people) who are the recipients of the messages 
(dissemination response) and whose comfort, quality of life ,and sometime just life, depend of them. 

• If the research and technical object to consider is the global warning system, who is in charge 
of the this global picture ?  

• If we consider only the hydrological/meteorological part of the system, what is the maximum 
possible benefit for the global system, due to improvements of these “hydromet” components, 
and who is in charge of the global evaluation, to draw future priorities for research and 
transfer ?  

• Hydromet components : Robustness or accuracy ? 

Flood Forecasts, Lead Time And Time To Peak  

Forecasts at downstream site derived from :  

• Observations/measurements of water stages at downstream and upstream sites  
• Measurements of (catchments) and upstream reach flows  
• Observation of rainfall (snow melting)  
• Forecasts of rainfall  
• Nowcasting and forecasts from other basins 
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TENTATIVE S/T LOCKS AND CRITICAL COMPONENTS IDENTIFICATION  

• For the headwater catchments, the nowcasting, the rainfall observations and forecasts, the 
snow melting modelling are, at least, critical components. 

• For the downstream forecasting sites, flow routing in main channels (including upstream 
reaches) are critical components. 

• At basin scale, the improvement of runoff production (robust across scale) and water 
transfers controlled by topography and soil is important. All spatialized relevant 
information (geology, terrain, land use and land cover - DOT) is also important, and the 
incorporation of embedded meteorological information at different scales as well. 

RAINFALL OBSERVATION AND MEASUREMENTS  

It’s now obvious that hydrological radar will be soon the most appropriate device in rainfall 
measurements, in cooperation with the ground systems. The capability to feed hydrological models 
with quantified spatially consistent rainfall is critical, even for global rainfall-runoff models, and not 
only for distributed physically based models (robustness and uncertainty ?). That doesn’t mean that 
only distributed physically based models are relevant modelling components. 

 
ROUTING and INUNDATION MODELLING  

In main rivers, the channel flow routing is critical to improve the forecasts. One robust possibility is to 
use Kinematic wave based models (with lateral flows) as the CEH KW model for example. The 
difficulty is in using the results of these models to draw the flood plains according to the inundation 
modelling needs. The hydrodynamics based models are more efficient, but less robust and, to a certain 
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extend, data driven. The 1D hydrodynamics models are robust enough to be used as a component 
incorporated in operational systems. The main questions are about the needs in geometric data to feed 
the models, and the operational staff skills in operating them. The flood plains mapping is much more 
easy from these models if, and only if, only one geometric database is used. The geometric 
characteristics of the basins are more and more needed in hydrological modelling, generally speaking, 
the use of DOT is one way of improvements. 

1D HYDRAULICS/GEOMATICS MODELLING – 

 
RUNOFF PRODUCTION MODELLING IMPROVEMENTS vs ROUTING 
IMPROVEMENTS  

Improved process representation relevant to scales beyond the point : hillslope, grid, catchment, …, 
using with a better “yield” the available DTM and DEM, Water tracking on slopes, runoff-production 
is dominated by sub-horizontal water transfers controlled by topography and soil, Better use of spatial 
dataset support : terrain, soil, geology, land use, land cover, weather variables. 

• Improved model transfer to ungauged catchments across scales. 
• Whole catchment models, linking rainfall-runoff and hydrodynamic river models. 
• Atmospheric/hydrological model coupling 
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RISK ASSESSMENT  

All the technical components have the unique purpose to provide the Service in charge of public 
warning with relevant information. Messages design and dissemination, and dissemination response, 
are the most important tasks of a flood forecasting system which must be first a flood warning system 
The answer is not in hydrological modelling. 

Elements of a flood forecasting (ff) system  

The purpose of a flood forecasting and warning system (FFWS) is to alert the general public 
and concerned authorities of an impending flood as much in advance, andwith as much 
reliability, as possible. The main components of an FFWS include: (i) data (hydrological, 
meteorological) collection and transmission; (ii) forecasting, which involves analysis of 
observations as well as prediction of future rainfall, water elevations and discharge for 
periods varying from a few hours to a few days ahead; and (iii) dissemination of information 
to user agencies and communities. Among the various products, the most useful outputs of 
FFWS are river elevations, inundation extent, and time of occurrence for peak discharges 
with lead times that are sufficient to initiate appropriate responses by authorities and affected 
populations. Lead time refers to the period of time between the issue time of the forecast and 
the beginning of the forecast validity period (WMO 2000). The lead time depends upon the 
catchment lag time, which varies with basin size and characteristics, as well as characteristics 
of the storm event. For smaller catchments, especially in mountainous regions where flash 
floods, associated with the meteorological phenomenon, dam failures, rapid snow melt, ice 
jams etc., occur frequently, the catchment lag is very small (i.e. minutes to hours). In such 
areas, including only the rainfall forecast in FFWS may not always improve the utility of FF 
to users and thus a customized approach may be required (Doswell et al. 1996, Hapuarachchi 
et al. 2011). For larger basins where catchment lag time is long, an effective lead time can 
vary from hours to days, and inclusion of rainfall forecast is essential to enhancing the lead 
time. The factors that impact lead time of forecast in the design of FFWS for a catchment 
include topographic and hydro-meteorological features of the basin, the dynamics of basin 
response, and the availability of data. Furthermore, limitations on the level of services (how 
frequently forecasts are issued and updated, reliability, etc.) are largely dictated by the cost of 
data collection, modelling constraints, trained professionals, FFWS infrastructure, trans 
boundary issues, and institutional factors.  

about:blank


IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 7 Issue 12, December 2020  

ISSN (Online) 2348 – 7968 | Impact Factor (2020) – 6.72 

www.ijiset.com 

305 
 

 

Catchment models for flood forecasting  

The catchment models used for flood forecasting may be classified according to many 
criteria. Models may be classified depending upon the way catchment processes are 
represented – deterministic or data driven; or the way the catchment is spatial discretized – 
lumped or distributed. Deterministic models solve a set of equations representing the 
different watershed processes that produce a single model output for a given set of 
parameters. In contrast, data-driven models provide the capability to simulate the random and 
probabilistic nature of inputs and responses that govern river flows. The spatial distribution of 
inputs and parameters is also an important aspect of model selection. In lumped models, the 
catchment is conceptualized as consisting of various storage tanks representing water storage 
on the catchment surface, in the root zone, unsaturated zone and in the groundwater zone. 
Modelling essentially consists of a set of expressions that describe the movement of water 
through these tanks. The division of precipitation into various compartments is controlled by 
catchment properties, which are represented in a model by parameters that are tuned during 
model calibration. In a distributed model, the catchment is divided into a large number of 
cells or hydrologic response units. While distributed models are generally expected to 
reproduce the hydrological processes in spatially-varied catchments more accurately, 
uncertainty in model parameters can lead to substantial errors in distributed models 
(Carpenter and Georgakakos 2006). Further classification of catchment models is based on 
the rainfall estimates for lead time, sometimes called the look back window. A model may be 
an updating or non-updating model. Forecast updating involves the use of the most recent 

about:blank


IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 7 Issue 12, December 2020  

ISSN (Online) 2348 – 7968 | Impact Factor (2020) – 6.72 

www.ijiset.com 

306 
 

exogenous inputs, such as observed rainfall and observed flows up to and including the time 
of forecast, to adjust model-computed flows. Many updating models also update Quantitative 
Precipitation Forecasts (QPFs) within the lead time as observed precipitation data become 
available. The catchment models based on updating of QPFs are comparatively more accurate 
and reliable because they use real-time data observed during the lead time. 

 

Data-driven fF models  

Data-driven models are often referred to as black-box model because they depend upon the 
statistical or cause–effect relationships between hydrologic variables without considering the 
physical processes that underlie the relationships (Luchetta and Manetti, 2003). Data-driven 
models can include stochastic models (e.g. Regression models, TimeSeries models, and 
Bayesian models) and nonlinear timeseries models (e.g. Artificial Neural Network models, 
Fuzzy Systems, and adaptive neural Fuzzy Inference Systems) that require extensive and high-
quality time series of hydrologic data. Stochastic models (Box et al. 2016) reflect techniques 
based on time-series analysis, which have become very popular in hydrology. Stationary 
stochastic models such as AutoRegressive Moving Average (ARMA) and non-stationary models 
such as Auto-Regressive Integrated Moving Average (ARIMA) can provide adequate 
representation of the dynamics of the RR process at large timescales, say monthly or seasonal; 
parameters of these models have some physical interpretation in those cases. The success of 
these models can be attributed mainly to their simple mathematics, small computational 
requirements and their ability to reliably reproduce hydrographs. In the context of operational 
flood forecasting, ARMA models are mainly used for error correction. Nonlinear time-series 
models such as Artificial Neural Networks (ANNs) are another example of a data-driven FF 
approach that can be effective at modelling rainfall-runoff processes and floods forecasting 
(ASCE Task Committee, 2000a, b). ANNs are nonparametric models that adapt to information 
inputs and are capable of representing complex nonlinear relationships (Antar et al. 2006, De 
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Vos and Rientjes 2005). ANNs can learn from input data, generalize behaviour of data, and cope 
with noise. Comprehensive reviews on applications of ANNs in hydrology can be found in 
ASCE Task Committee (2000a, b), Abrahart et al. (2010), and Maier et al. (2010). An 
interesting application of data-driven techniques is to improve the real-time forecasts issued by 
deterministic lumped RR models, in which the catchment response is simulated by a conceptual 
model and the residuals are simulated by an ARMA model. Brath and Toth (2002) found 
substantial improvements in discharge forecasts by coupling ARIMA models with data-driven 
models (i.e. ANNs) for rainfall forecasting and discharge updating. Despite many successful 
applications, ANNs have not been deployed in operational flood warning systems, except a few 
prototype working examples (e.g. Kneale et al. 2001). This can be attributed to various practical 
issues: long training times, the potential to overfit the model to a dataset, phase-shift errors, and 
a lack of guidance on architecture and parameter selection (Dawson et al. 2006). Often, 
ANNmodel-based forecasts are reliable only at small lead times (e.g. one step ahead), which 
creates uncertainty in their applications for flood management (Prakash et al. 2014). In view of 
the concerns about the performance of ANNs for FF, it will be helpful to deploy these along 
with other models in a few pilot applications and evaluate their performance. Another class of 
data-driven models is based on fuzzy logic and fuzzy set theory (Zadeh 1965). Fuzzy models 
operate on an IF–THEN principle, where ‘IF’ is a vector of fuzzy explanatory variables and 
‘THEN’ of fuzzy consequences (Shrestha et al. 1996). Several approaches have been used to 
apply fuzzy set theory to flood forecasting, including fuzzy optimization techniques, fuzzy-rule 
based systems, and combinations of the fuzzy approach with other techniques (Dubrovin et al. 
2002). Luchetta and Manetti (2003) compared a fuzzy-logic-based algorithm for hydrologic 
forecasting to an ANN model and showed that the fuzzy approach outperformed the ANNs. 
Liong et al. (2000) predicted daily river water levels in the Buriganga River, Bangladesh by 
using a fuzzy logic model in which the upstream water levels were the inputs. Dubrovin et al. 
(2002) introduced a model called Fuzzy-State Stochastic Dynamic Programming, which can 
take into account both uncertainties due to random nature of hydrologic variables and 
imprecision due to variable discretization. Yu and Chen (2005) proposed an error prediction 
fuzzy-rule-based method as an updating technique to improve real-time flood forecasts with one 
to four hours of lead time. The hybrid adaptive neural-based fuzzy inference system (ANFIS) 
combines ANN and fuzzy theories. Bae et al. (2007) developed an ANFIS-based operational 
forecasting model for monthly reservoir inflow forecasts using rainfall, inflow, temperature, 
relative humidity and monthly weather forecasts. Firat et al. (2007) used ANFIS to forecast 
daily river flows using antecedent flows on the Great Menderes River in Turkey. Data-driven 
models represent the statistical properties of the system and the relationships between cause and 
effect variables, but do not represent the underlying physics (Abrahart et al. 2008). Practical 
applications of the data-driven models for flood forecasting are still lacking chiefly due to the 
two reasons: (i) data-driven models do not account for the changing dynamics in the physics of 
the basin over time (i.e. aggregation/ disaggregation/ changing land pattern); and (ii) the 
parameters of data-driven models are completely dependent on the range of the data (i.e. 
maximum and minimum) used for calibration. As a result, process-based hydrological models 
have traditionally dominated FF. 

MIKE 11 Nam  

Various model have been developed to solve the rainfall runoff relationship in engineering 
research and practices. The widely known rainfall runoff models identified are the Rational 
Method (McPherson, 1969), Soil Conservation Service-Curve Number Method (Maidment, 
1993), and Green and Ampt Method (Green, 1911). The more complex models which should 
provide better runoff estimation are continuously being researched and developed. Some of the 
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complex models identified are Genetic Danish MIKE11 NAM (1972). The choice and validity 
of the model depends on the type of problem, the data availability and the decision to be made. 
MIKE11 NAM model was applied primarily because of its ability to simulate the watershade 
physical processes in more detail. MIKE11 NAM model is a watershed lumped-parameter 
model which are highly relevant with this particular watershed under study and the long term 
flow simulation desired. In addition, it is a complete and effective modeling software with the 
adds-on module which allows flexibility for future investigation. The MIKE11 was applied 
because of its availability in the Hydraulic and Hydrology Department, Universiti Teknologi 
Malaysia. MIKE11 NAM is a professional engineering software package developed by Danish 
Hydraulic Institute, Denmark. This one-dimensional modeling tool developed since 1972 has 
been accepted worldwide especially for water resources, water quality planning and 
management applications (DHI). Specifically the MIKE 11 software is meant for simulation of 
flows, water quality and sediment transport in estuaries, rivers, irrigation systems, channels and 
other water bodies. The MIKE11 NAM, the watershed lumped and conceptual rainfall-runoff 
model regarded watershed as one unit and the conceptual model are based on considerations of 
the physical processes (Mike 11 User Manual). 

Data Requirements for the MIKE11 NAM model consist of 

i) Setup parameters – catchment area, topography and soil properties. 

ii) Model parameters – time constants and threshold values for routing of overland flow, 
interflow and baseflow. 

iii) Meterological data – precipitation and potential evaporation. 

iv) Streamflow data fpr the model calibration. 

The reliability of the MIKE11 NAM was evaluated based on the Efficiency Index (EI) as 
described by Nash and Sutcliffe (1970). There were several related studies available for model 
performance evaluation such as by Aitken (1973) and Fleming (1975). The procedure by Nash 
and Sutcliffe (1970) had been widely used for the detection of systematic errors with respect to 
long term simulation. The EI was developed to evaluate the percentage of accuracy or goodness 
of the simulated values with respect to their observed values. 

XAJ Model  

It is a rainfall-runoff watershed model and is highly suited to the hydrological simulation and 
forecasting in humid and semi-humid regions. The core of the XAJ model is the concept of 
saturation excess runoff generation mechanism which describes the runoff generation processes 
usually happen in humid and semi-humid regions. The XAJ model is a semi-distributed 
conceptual model. It separates the whole watershed into several sub-basins according to the 
rainfall stations and Thiessen polygon method. The evapotranspiration, runoff generation, and 
flow concentration computations are carried out for each sub-basin. The generated runoff is 
separated into three components, which includes surface runoff, interflow, and groundwater, and 
then concentrated using multiple linear reservoirs and lag-and-route method, respectively. The 
above mentioned computations generate the discharge of each sub-basin. The discharges of sub-
basins are then routed down the river channels to the whole watershed outlet using the 
Muskingam successive routing method. 
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Fuzzy expert system design for flood forecasting  

Linguistic terms are chosen to describe the input variable stage and the results. Further 
refinement of the models could not be achieved by adding extra membership functions. 
Gaussian membership functions (the function is generally suited for Indian rivers) can be used. 
Applying a similar method of data classification, membership functions are determined for the 
output variable discharge. 

Rule definition  

Some years of average hourlystage data and expert knowledge are used to create a rule base for 
the fuzzy logic model. Rules are defined for both the high and low extreme conditions, with 
regard to actual occurrences, because of the physical nature of the relationships. Depending on 
number of membership functions for each input variable; the minimum rule base is created. For 
each data point, all rules are evaluated. 

Fuzzy model construction  

The platform selected for the fuzzy logic expert system is MATLAB and MATLAB'S Fuzzy 
Logic Toolbox. The variables are combined into rules using the concept of 'AND'. The fuzzy 
operator 'minimum' is applied as the 'AND' function to combine the variables. No weightings 
are applied, which means no rule is emphasized as more important in respect to estimating the 
discharge. Implication is performed with the minimum function, and aggregation is performed 
with the maximum function. The centre of gravity method is applied as a means of 
defuzzification of the output membership functions to determine a crisp set. Based on this 
structure a baseline model fuzzy logic expert system for stage-discharge relationship is 
constructed for the G&D stations. Alternate functions for the expert system are investigated 
through sensitivity analysis. 

Sensitivity analysis  

A sensitivity analysis is performed for the fuzzy logic operator AND, and for methods of 
implication, aggregation and defuzzification. The results of changing a single operator or 
method while the rest of the model is held constant are compared with the results from the 
baseline model. The results are evaluated on the basis of correct linguistic matches. Based on 
this sensitivity analysis, the AND operator 'minimum' and the implication method 'minimum' are 
found to perform better than the product method. The fuzzy logic and ANN models are 
evaluated based on their ability to predict the discharge. 
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