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The main aim of this paper is to develop the accurately map of soil chemical parameters were used for
development of the agriculture, forestry, ecological planning, and crop yield production. Soil chemical
properties analysis and forecast model was developed and validated with the Wavelet transform meth-
ods and multispectral satellite images. At the study area sites, satellite images and soil samples were col-
lected during a similar time. Three most important soil chemical properties such as organic carbon, pH
and EC were chosen to development of predication modeling based on the soil chemical information.
This valuable information of parameters was analysed according to conventional methods. The observed
data of soil was used for the predication modeling of soil chemical properties by MATLAB software. The
identification of soil chemical properties was the subject of multi-spectral satellite images through algo-
rithm of soil predication modeling. The real chemical characteristics of the soil are associated to wavelet
transformation methods. Forecasting of soil chemical properties and this model can be given more accu-
rate information related to soil nutrient parameters. Now a day’s machine learning programming is an
easy to applied on the natural resources and agriculture studies. The chemical characteristics of the soil
are compared with the different spectrum wavelengths of the MATLAB program. Therefore, four wavelets
models like Daubechies, Symlet, Biorthogonal and Coiflet were selected to development of predication
modelling, which wavelet model can be given more accurate information with best model of the soil
chemical properties. Also, the coefficient of five key components and soil-chemical values were associ-
ated in the MATLAB software. In the semi-arid regions in, India, which components have been highly cor-
related with soil parameters in the predicated modeling. More detailed information of soil chemical
characteristics was provided by four selected wavelet models developed based on the observed data
and satellite data. Prediction of soil chemical values has been identified through low and high-
frequency satellite images and artificial neural network model. In this study, the neural network wavelet
model was used to predicted values related to soil chemical properties in the semi-arid region. The devel-
oped two models, like polynomial and ANN, have been validated and compared to the soil chemical prop-
erties data, which models can be fitted with the study of soil chemical properties. The results of the study
area can be more beneficial for development of agriculture activities, climate change approaches, crop
and soil suitability planning. From the results of models have been given a fast and quickly information
of soil nutrient parameters without laboratory analysis. The results of predicated values can be more
helpful to precision farming related activates and soil fertility mapping to provide the farmers and agri-
culture scientist.
� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the natural resources and soils properties are one of the
essential resources on the land surface and deliver an irreplaceable
and various environmental average for entirely terrestrial organ-
isms (Osman 2014; Pande et al. 2021). In order to improve the
development of smart agriculture, water and ecological planning
and practices, spatiotemporal assessment of soil chemical proper-
ties is necessary (Lagacherie et al., 2008). For agriculture and
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conservation factors observed on the land surface, however, rapid
and reliable valuation of soil chemical characteristics has been
established. Since, traditional data was obtained by field soil sam-
pling and laboratory results (Ciampalini et al. 2015). A very effi-
cient method of saving time using less labor has obtained by a
large number of soil samples (Kumar et al. 2015;). In addition,
the techniques’ applications are restricted to small areas only,
while measurements and estimations of soil chemical properties
have been needed for landscape rulers by soil scientists, environ-
mentalists and farm managers (Psomas et al. 2011; Yang et al.
2019). Preparing novel processes is necessary for proper soil chem-
icals andmonitoring of climate smart villages and growing sustain-
able yields (Patode et al. 2017).

Remote sensing and GIS technology have very quick given the
information of soil chemical parameters and an overview of larger
areas (Das et al. 2015; Pande et al. 2018a). Multispectral data appli-
cations, however, viz. Due to the low, coarse spatial and spectral
resolution of cloudy images masking complete indicator material
or soil data frequency, the Landsat Thematic Mapper data for the
calculation of soil chemical properties has been limited (Cloutis
1996; Pande et al. 2018b; Pande and Moharir, 2018). Hyper-
spectral images from the satellite show spectral radiance with
wide, high-wavelength ranges given new learning perspectives
(Castaldi et al. 2016). Hyperspectral data are also generally useful
in describing the essential chemical properties of soil, such as soil
texture, soil colour, soil moisture, soil erodibility, soil composition,
nutrients, pH, EC and OC, etc. (Arslan et al. 2014; Shinde et al.
2020). The surface of the earth is moderately enclosed by forestry,
plant and agriculture. Soil-related soil naturally co-occurs in
canopy spectra with green vegetation, which contributes to a vari-
ety of vegetation and soil pixels and combined spectral signature
(Yao et al. 2014; Fernández et al. 2016). In soil-related studies,
entire hyperspectral data have used and integrated spectral reflec-
tance of soil and soil-covered features reflecting the original pixels
of satellite images have required (Summers et al. 2011; Bangelesa
et al. 2020). The hand-held responses and approaches of agricul-
tural bodies and plants were assessed and analyzed in the group
of soil chemical properties, including soil texture, moisture, salin-
ity, pH level, chemical structure and temperature (Lausch et al.
2013; Zhang et al. 2019).

Remote Sensing is an important method for describing both
temporal and spatial properties observed from earth surface char-
acteristics for spatially separated variables (Kneubuhler, et al.
2014; Pande et al. 2017; Pande et al. 2019). Vandana Tomar et al.
2014 studied the prediction of soil physical and chemical proper-
ties useful for special emphasis on agricultural land and ecological
management in India (2014). Ustin et al. (2006) used non-
destructive and well-organized computational wavelet transfor-
mation techniques, but the current view of agriculture, forestry
and other areas under the climate change scenario is critical to soil
health.

Wavelets convert methods and satellite data was easily classify
the soil chemical properties (Xuelei Wang et al., 2010; Lihua and
DetiXie, 2012; Peng et al., 2012; Liao et al., 2012; Pande, 2020d).
Models for real-time monitoring of soil factors outlook for soil
physical and chemical properties prediction have developed (Ines
et al., 2013). Hongyan Chen et al. (2011), viz., have developed three
predictive models. Useful for predicting soil chemical properties,
linear, polynomial, strength, nonlinear.

Although the key component regression analysis and limited
multilinear regression are very small researchers who have
researched soil chemical properties via linear, nonlinear and power
models (Ma et al., 2010; Dong et al., 2011; Isenstein and Park,
2014), while the ANN model, and restricted weighted regression
analysis has used to predicted the soil properties values based on
the non-linear model (Hongyan Chen et al. 2011; Lin Qiu et al.
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2013; Jia et al. 2017). The effects of merged or hybrid models from
two or more linear or non-linear models were used (Cheng-Wen
et al., 2001).

Spectral reflectance from spectra protected by long wavelength
or low–high frequency bands may be automatically correlated
compared to the different reflectance ranges conducted by Bilgili
et al. (2008). For correlating spectral reflectance information with
the variable of interest, traditional statistical processes are not use-
ful. India is the best agricultural market and plays a key role in
understanding the chemical properties of the soil. India is the sec-
ond largest nation in the world in terms of population. Therefore,
the demand for organic or inorganic food from stockholders is very
strong, but because of climate change factors, India has faced many
problems for a few years. These factors influence different atmo-
spheric factors, such as elevated CO2 levels, temperature, drought,
inadequate rainfall, and the availability of groundwater and sur-
face water. The findings will help to improve sustainable yields,
crop preparation, soil quality and salinity problems in the semi-
arid region of India.

2. Study area

The study area was located in Rahuri block, Dist. Ahmednagar of
Maharashtra State in the India. The mean elevation is 530 m and
the latitude and longitude are between 19� 15 ’ N to 19� 340 N
and 74� 230 E to 74� 500 E. (Fig. 1). The region was dominated by
the Western Ghats’ rain shadow zone in the Mula and Pravara river
basins. In the study area, the farmers are familiar with sugarcane
crop. Most of the agriculture land is under irrigation, in this these
area farmers have cultivated land during three seasons of India but
the other areas unavailability of water is not cultivated land for
three seasons. As per observational records, the total study area
is 20 Ha. agriculture land. In the Deccan trap formation, the entire
study region is under basaltic hard rock with black soil. The mean
temperature between April and May is 45� C; the minimum tem-
perature during December and January falls to 09� C.

Because of these factors, the region is situated in the half-help
region with variations of soil temperatures of average summer to
winter exceeding 7 �C. The annual precipitation average is 550–
650 mm. The present soils have ben formed by basaltic Deccan trap
formation rocks. Therefore, six types of soil (i.e. deep black, black,
alluvial, red and saline soils) are observed in the study area.

3. Methodology

More specific soil predication values were given by the adopted
methodology. It is useful for selection of crops, forestry and envi-
ronmental growth in semi-arid regions. Predicated data were gen-
erated and validated with observed data. Multispectral data are
collected from USGS site. In this study, three soil chemical param-
eters such as pH, EC and organic carbon (OC) are selected and ana-
lyzed by the Department of Soil and Agricultural Chemistry, MPKV,
Rahuri. Predicated the soil chemical properties values have calcu-
lated by wavelet transformation models. Using adopted models
and algorithms, the real and expected values of soil properties
are compared and the errors calculated, which models is best for
the predication of soil chemical properties values. The same
approach is as follows:

4. Field soil sampling

In this analysis, various soil samples were collected and analysis
and used for predication models of soil. Similar date of soil samples
from the USGS portal are obtained from multispectral data with
high resolution images in the months of Sept. to Dec. of 2018. Four



Fig. 1. Location map of study area.

Fig. 2. Architectural flow diagram for correlation analysis and predicted soil properties.
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bands, such as Red, Green, Blue and NIR, split the multispectral
results. One cycle with average numbers derived for the use of
spectral reflectance was composed at each soil position point and
multispectral estimation. A reflectance graph with four wave
reflection values was planned for multispectral measurements. In
order to reduce the influence of the atmosphere due to climatic cir-
cumstances. For calibrations or coefficient correlation, satellite
data has used on the observed data. The soil properties values such
as soil organic carbon, pH and EC. were determined at the MPKV,
Rahuri with analyzed in the Soil Chemistry department at MPKV,
Rahuri respectively.
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5. Statistical analysis

5.1. Correlation analysis

Data on soil properties and satellite data were compared by
using PCA and wavelet transformation models. In this analysis, a
total of five components were tested for the accuracy of four wave-
let methods based on soil property data. These findings provide
more specific information on soil parameters, but we have devel-
oped a correlation analysis equation If gNR�NS : If g � I0:5f g; I1f g be
the set acquired images where NR, Ns{I0.5} and {I1} is shows values,
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total number of samples and image set developed at 0.7 km height
and image set attained at 1 km, respectively. Multispectral images
focus on wavelet decomposition as per this equationRM XN.domain
Multispectral images were produced using four wavelet decompo-
sition methods, including the Daubechies wavelet, the Symlet
wavelet, the Biorthogonal wavelet and the Coiflet wavelet. In the
transformation of wavelets, the development of four decomposed
image set components was a key role irs, which are referred to
equation as per{Ak, Hk, Vk, Dk} = Wk(irs), where, Ak, Hk, Vk2 and Dk2

hence equation directly showed of low frequency, horizontal and
vertical high frequency and diagonal components, of kth wavelet
methods respectively, k = 1,2,3and4, Useful methods, such as Dau-
bechies, Symlet, Biorthogonal and Coiflet wavelets, are used to pro-
vide more accurate predictions of soil chemical parameters in the
study area. 3D representation of the extracted wavelet samples
as per equation {A}4�NR�NS Here, {A} is the wavelet decompositions
of two different spatial representations, {I0.5 and {I1}. Thus, as per
extracted and decommissioned wavelets, they were formulated
as a single representation using a simple averaging method. Mul-
tispectral images of the fused wavelet decomposition are shown
in the following equation-1, respectively

AF
n o

AF ¼ 4�NR � Ns=2 ð1Þ

A dimensional conversion process has applied AF
n o

to obtain

1D array. It is decomposed sets, describe as A1D
n o

, through

column-wise operations. Further, we have been reduced the

dimensionality of A1D
n o

with the help of principle component

analysis as per estimating for correlation coefficient as per wavelet
factors and output variable, i.e. soil chemical properties concentra-
tion from satellite images.
6. Statistical and validation strategy

Separation of soil samples and results from wavelet prediction
and validation data sets is difficult due to the limited number of
soil samples. As a result, the Leave One-Out Cross-Validation
Method was used to examine the predictive capacity and stability
of soil spectral models. This operation was carried out in the
MATLAB and Data Analysis Toolbox. A number of studies have
demonstrated the possibility of a single-out cross-validation
method in estimating the model performance of the prediction
models (Gao and Bai, 2015; Mikshowsky et al., 2017). For the eval-
uation of soil chemical properties value, the root mean square error
(RMSE) and the determination efficiency coefficient (R2) have been
used. These functions may be described as follows: In this study
area, two validation criteria were used to determine model perfor-
mance: root mean square error (RMSE) and coefficient of determi-
nation (R2) as per Eqs. (1) and (2).

R2 ¼ 1�
Pn

i¼1ðZi � ziÞ2Pn
i¼1ðZi � ziÞ2

ð2Þ

Where, n is the number of samples, zi is the measured soil chemical
properties value for the sample i, zi is the predicted value, z is the
mean value of the measured properties.

RMSE ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðPyi � OyiÞ2

q
ð3Þ

Where, n is the total number of observations, py denotes estimated
or predicted values of soil properties oy is the observed or actual
values of soil properties
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7. Results

7.1. Wavelets transforms methods (Models) performance

The results of soil prediction models were correlated with the
PCA analysis (Hong et al. 2018). This outcome is presented in
Table 1. Therefore, for the analysis of soil chemical predictive val-
ues were chosen to analysis of five key components. These soil val-
ues have been determined from methods of wavelet
transformation that highly correlate components with soil chemi-
cal factors in the semi-arid zones. For the prediction of three major
soil chemical properties, the study of correlation coefficients of the
five main components of each wavelet method established these
values, which are very helpful for precision farming and agricul-
tural purposes. Too many projects on the precision agriculture, AI
and remote sensing technologies are underway today (Gomez
et al. 2008; Zhang et al. 2013). This research will contribute to
the sustainable development of agriculture in the semi-arid zone.
The results have demonstrated by the use of biorthogonal and dau-
bechies wavelets, while the methods of transformation of wavelets
and multispectral images have shown on soil characteristics data.
The adopted methodology have given better accuracy compared
with other soil data predication models (Gruszczynski, 2019).
The first main component of the coiflet wavelet shows a strong
correlation with the pH range, whereas the fourth and fifth compo-
nents are not well correlated with the pH ranges (Table 1). The cur-
rent research has shown a broad correlation of biorthogonals and
daubechies with the pH content with other methods using
MATLAB software. In the comparison with other wavelets. These
other parameters show a high correlation with the EC and with
the main components of organic carbon.

With a strong correlation with organic carbon levels, the symlet
wavelet has provided better results. We found that the Symlet
wavelet also has less variance compared to the average association
with pH and EC values. Daubechies and biorthogonal wavelet tech-
niques were adapted from the correlation coefficient analysis
demonstrated to maintain a significant relationship established
throughMATLAB software with soil chemical properties. In Table 2,
the actual and expected spectrum of soil values is present. In this
analysis, the performance of the selected four wavelets was not
consistent with the chemical properties of the soil. The Daubechies
wavelet performs well in the soil data for predicted organic carbon
values (Fig. 3).

The predicted Biorthogonal wavelet models dominates the pH
range of multispectral data, while the regulation of the symlet
and coiflet wavelets was calculated using multispectral data for
the predicted electrical conductivity. The soil chemical parameter
predicated maps were prepared using Arc GIS software (Fig. 4).
For decision support systems, crop suitability sites and other agri-
culture approaches the land prediction map can be used. However,
ANN Model predicted low-and high-frequency soil chemical prop-
erties in satellite images (Panneerselvam et al., 2021).
8. Discussion

8.1. Prediction analysis

Further analysis was calculated in order to ensure the coeffi-
cient correlation of the value of soil properties using selected four
wavelet methods and thus the key components into 1 to 5. Within
the MATLAB program, the neural network model was developed
based on the observed soil data. The soil chemical parameters with
the best output using the prediction model is observed. With 22
neurons in its single hidden layer, the neural network model was
developed. It is used without soil laboratory analysis for the



Table 1
Correlation of principle components for four wavelets transform methods with soil properties.

Soil properties Principle component s Daubechies wavelet Symlet wavelet Biorthogonal wavelet Coiflet wavelet

pH 1 0.1750e�16 0.1160e�16 0.1750e�16 �0.0580e�16
2 0 0 0 0.1595 e�16
3 0 0 0 0.0493e�16
4 0.0465e�16 0.0400e�16 0.0457e�16 �0.1729e�16
5 �0.0273e�16 0 �0.0273e�16 �0.0467e�16

EC 1 0.0277e�16 0 0.0277e�16 0.0277e�16
2 �0.0519e�16 0 �0.0519e�16 �0.1019e�16
3 �0.0935e�16 �0.0246e�16 �0.0935e�16 �0.0246e�16
4 �0.1779e�16 0.2619e�16 �0.1779e�16 0.0524e�16
5 �0.0534e�16 0.2137e�16 �0.0534e�16 �0.2137e�16

Carbon 1 �0.1416–16 0.0505e�16 �0.1416e�16 0
2 �0.0935e�16 �0.0236e�16 �0.0935e�16 0
3 0 0.01288e�16 – 0
4 0.0823e�16 0.1190e�16 �0.0823e�16 �0.2975e�17
5 �0.0426e�16 0.0813e�16 �0.0426e�16 �0.2129e�17

Table 2
Details of Prediction values and MSE Errors of Soil properties.

Soil chemical properties pH EC Carbon

Predated MSE Errors Predated MSE Errors Predated MSE Errors

Daubechies wavelet 8.183 0.203 0.58739 0.18739 0.11313 0.07313
Symlet wavelet 8.321 0.341 0.33654 0.06346 0.04106 0.00106
Biorthogonal wavelet 8.112 0.132 0.39241 0.00759 0.19432 0.15432
Coiflet wavelet 8.541 0.561 0.39185 0.00815 0.31709 0.27709
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Fig. 3. Performance of selected four wavelets methods for prediction of soil properties.
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prediction of soil chemical properties values. The training library

consists of A1D
n o

as input characteristics and the soil chemical

properties range as the target variables. In the development of a
neural network the Levenberg Marquardt (LM) algorithm is being
used to set up an objective function to be minimized in soil. The
MSM is a function that can be minimized. The altered division of
the training library had collapsed. The neural network model was
trained and validated under the MATLAB Program on soil chemical
characteristics. The numerous multispectral tested data are col-
lected for the same territory but are useful for the neural network
model from the point of reception. Models have been used to mea-
sured the predictive values for soil chemical properties (Fig. 2).
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Four Models such as Daubechies, Symlet, Biorthogonal, and Coi-
flet were chosen in this analysis. Various soil chemical parameter
values such as pH, EC and carbon were calculated using wavelet
transform models with expected values such as 8.183, 8.321,
8.112, 8.541, 0.58739, 0.06346, 0.00759 and 0.07313, 0.00106,
0.15432 and 0.27709 respectively (Table 2). The key findings
showed that the quality of carbon, pH and EC had the strongest
and moderate association with the variance of soil chemical prop-
erty values. Average standard errors were calculated through ANN
model. The soil property values were contrasted with the real val-
ues of the chemical properties of the soil (Table 3). Polynomial
model was validated with ANN Model results. In the soil parame-
ters the validation has provided with more precise values.



Fig. 4. Predicted maps of soil chemical properties using ANN Model in MATLAB software.

Table 3
Comparisons of observed and predicted soil properties values.

Actual pH Predicted Actual EC Predicted Actual Carbon Predicted

7.93 8.18 0.48 0.58739 0.05 0.11313
7.92 8.321 0.4 0.33654 0.04 0.4106
7.9 8.112 0.4 0.39241 0.04 0.19432
7.98 8.541 0.38 0.39185 0.03 0.31709
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9. Model performance

For validation of soil property values predicted using wavelet
transforming methods, Table 4 showed two models by two output
methods, two model types were selected in this study. For each
model, the best model is show in cross validation. More accurately
than polynomial models, created by validation criteria, ANN mod-
els have shown. The results show that the most predictable pH, EC
and Carbon efficiency is achieved between the tested models using
the wavelet methods. Both ANN and polynomial models have
showed different variation performance to predict pH content
(R2 = 0.8313) and (R2 = 0.8713). ANN and polynomial models’ per-
formance are not similar to predict EC content (R2 = 0.9571) and
(R2 = 0.9871). Similar, compared to both the model’s performance
showed on the Carbon content (R2 = 0.8556) and (R2 = 0.9146).
Table 4
Results Validation R2 and RMSE for studied models.

Soil properties Model R2

pH Polynomial 0.8313
EC Polynomial 0.9571
Carbon Polynomial 0.8546
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10. Prediction accuracy

The accuracy of various established models for potential out-
comes in the semi-arid region has tested in this analysis. Relative
RMSE values for models have calculated (Table 4). The results
showed that ANN and polynomial models were used to achieve
the highest and lowest prediction accuracies for EC and pH, respec-
tively (Fig. 5). Although the carbon content with high determina-
tion coefficients (R2 = 0.91) was predicted by ANN models, it was
also equal to high relative RMSE. When the performance of all
models was calculated to predict different soil chemical properties,
the RMSE values were consistent with other validation require-
ments for the most accurate model (Table 4). On the other hand,
when the performance of the models studied was compared to
the expected soil properties values, the EC content forecast was
RMSE Model R2 RMSE

0.44 ANN 0.8713 0.341
0.0092 ANN 0.9871 0.00759
0.31 ANN 0.9146 0.4106



Fig. 5. Correlation of Observed and Predicted soil properties.
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the lowest error (lowest relative RMSE). Mosleh et al. (2016) deter-
mined that pH, EC, and Carbon were all so accurate in the finest
prediction model, but the finest prediction model for coarse frag-
ment did not show the most precise calculation. Our research area
results showed that the finest prediction model did not lead to the
most reliable evaluation.
11. Conclusion

In the semi-arid area of Maharashtra in India, spatial distribu-
tions of pH, EC and carbon content were observed using the Wave-
let transforming method with ANN and polynomial models. Two
results of the expected soil values are validated for polynomial
models. In order to predict pH, EC and carbon content, the ANN
model had the highest performance and even the polynomial
model had the lowest expected pH, EC and carbon content perfor-
mance. Among the other wavelet transformation methods studied,
the remote sensing indices showed an advantage and allowed clar-
ification of pH, EC and carbon content variability. Validation crite-
ria should be carefully interpreted, since the best model cannot
always make the most reliable calculation can be inferred. The
effects of the joint coefficient correlation analysis and the forecast
analysis of soil chemical properties on multispectral images were
observed in the study area results. This satellite data was useful
for a better understanding of the characteristics of the soil and
the improvement of its properties. The correlation analysis
revealed that the dominant wavelets and their examination of
key components revealed that the chemical report correlation is
strong. The results are strongly supported by the prediction analy-
sis carried out with the neural network in MATLAB software. Addi-
tional studies may also be needed to investigate and propose new
environmental covariates in order to capture and spread soil
27
variability in arid and semi-arid regions. The study area was
divided into homogeneous sub-areas sampled by elevation strata
and determined to be higher. Wide soil sampling is likely to
increase the performance of the ANN model by wavelet methods.
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